I_Ial-l'=E-— Ausgabe 01 /2026

ACCESS

ORDNER UND DATEIEN
VERWALTEN

Lesen Sie Ordner und

Dateien in Access ein und
zeigen Sie diese in einem
TreeView-Steuerelement an
(ab Seite 50).

WARUM REFERENZIELLE SYNCHRONE CHECKBOXEN SQL-ABFRAGEN MIT

INTEGRITAT IN ACCESS? IN HAUPT- UND UNTER- EXECUTE STATT RUNSQL
Lesen Sie, wie Sie mit Beziehun- FORMULAR Lernen Sie die beiden Methoden
gen mit referenzieller Integritét Entdecken Sie einen spannenden kennen und erfahren Sie, warum
Inkonsistenzen und Fehleingaben Anwendungsfall fiir Checkboxen »Execute« mehr Méglichkeiten
verhindern. in Formularen. bietet.

www.access-im-unternehmen.de Mat-Nr. 01583-5153

ACCESS

Ordner und Dateien mit Access verwalten

Auf einer Festplatte hauft sich mit der Zeit Einiges an. Der Windows

Explorer oder Alternativen bieten meist ausreichende Funktionen, um der
Datenmenge Herr zu werden. Aber manchmal wiirde man gern zuséatzliche
Informationen wie Metadaten zu Biichern, MP3s, Videodateien et cetera
hinterlegen und diese durchsuchen kénnen. Das Dateisystem bietet jedoch
keine ausreichenden Maglichkeiten dazu. In dieser Ausgabe schauen wir uns
daher an, wie wir Ordner und Dateien in Access einlesen und diese in einem

TreeView-Steuerelement anzeigen konnen.

Eines vorneweg: Die Losungen eignen sich nicht, um die
Festplatte vollstandig einzulesen, sondern sind eher flir
Unterordner mit einigen Ordnern und Dateien geeignet,
da wir nicht um das Einlesen der einzelnen Elemente
herumkommen. Der groBe Nutzen entsteht dadurch, dass
die Dateien eine eindeutige File-ID aufweisen, die wir
ebenfalls speichern und durch die wir den Dateien uiber
Tabellen Metadaten hinzufligen konnen. Zu Beginn steht
das Einlesen der Elemente, was wir ausfiihrlich im Beitrag
Ordner und Dateien in Access-Tabellen einlesen ab
Seite 50 beschreiben.

Die Ordner und Dateien mdchten wir (ibersichtlich darstel-
len, was sich am besten im TreeView-Steuerelement erle-
digen lasst. Hier kdnnen wir die Elemente in der gleichen
Hierarchie abbilden, wie es auch im Windows Explorer

der Fall ist — und wir haben sogar zusatzliche Mdglich-
keiten, da wir alle Elemente gleichzeitig im Baum abbilden
konnen. Im Beitrag Dateien schnell im TreeView-Steu-
erelement anzeigen stellen wir ab Seite 64 eine perfor-
mance-optimierte Version zum Fiillen des TreeViews mit
den Ordnern und Dateien vor.

Ein grundlegendes Problem vieler Access-Anwendungen
ist die mangelhafte Definition von Beziehungen mit refe-
renzieller Integritat, was in der Folge zu Inkonsistenzen

und weiteren Problemen fiihren kann. Warum Beziehun-
gen so wichtig sind, beschreiben wir im Beitrag Warum
Beziehungen mit referenzieller Integritat? ab Seite 2.

Ein weiteres Problem entsteht, wenn man Daten wie

die Kategorie eines Produkts mit einer 1:n-Beziehung
verkniipft, wodurch sich genau eine Kategorie je Pro-
dukt auswahlen lasst. Stellt man spater fest, dass doch
mehrere Kategorien je Produkt ausgewéhlt werden sollen,
muss man das Datenmodell umbauen. Wie das gelingt,
beschreiben wir im Beitrag Reflexive 1:n-Beziehung zu
m:n-Beziehung ab Seite 10.

Wenn zu einem Auftrag mehrere Teilauftrage gehoren,
mdchte man die Erledigung fiir beide Elemente anzeigen
konnen. Das sollte synchron geschehen, sodass beim
Markieren des Auftrags als »Erledigt« automatisch die
Teilauftrage markiert werden und umgekehrt. Wie das ge-
lingt, beschreiben wir unter dem Titel Erledigt-Status in
Haupt- und Unterformular synchron ab Seite 25.

SchlieBlich gehen wir in den beiden Beitragen Daten
bearbeiten: Execute vs. Recordset in DAO (ab Seite 34)
und SQL ausfiihren mit Execute statt DoCmd.RunSQL
(ab Seite 46) noch auf verschiedene Techniken rund um
das VBA-gesteuerte Ausflihren von Abfragen zum Einfi-
gen, Bearbeiten oder Loschen von Daten ein.

Viel SpaB beim Lesen wiinscht lhnen

A

[hr André Minhorst

www.access-im-unternehmen.de

Seite 1

TABELLEN UND DATENMODELLIERUNG
WARUM BEZIEHUNGEN MIT REFERENZIELLER INTEGRITAT?

Warum Beziehungen mit referenzieller Integritat?

In unseren Access-Audits mit unseren Kunden treffen wir immer wieder auf das fol-

gende Problem: Es gibt Tabellen, die zwar liber ein Feld Datensatze aus anderen Ta-
bellen referenzieren, aber es wurde gar keine Beziehung fiir diese Zuordnung definiert.
Und wenn eine Beziehung angelegt wurde, wurde fiir diese keine referenzielle Integritat
festgelegt. Das birgt verschiedene Gefahren, die unter Umstanden sogar Auswirkungen
auf den Unternehmensumsatz haben. Welche das sind und wie Sie diese Probleme be-
heben, zeigen wir in diesem Beitrag. Die Definition von Beziehungen mit referenzieller
Integritat ist essenziell und sollte, wenn diese noch nicht vorhanden sind, schnellstens
nachgeriistet werden. Das funktioniert in vielen Fallen aber gar nicht so leicht, weil die
Tabellen bereits inkonsistente Daten enthalten. Auch zur Identifizierung und Korrektur
solcher Datensatze liefert dieser Beitrag die passenden L6sungen.

Stellen wir uns vor, wir hatten eine Tabelle zum Spei- Der Tabelle tbiBestellungen fiigen wir die Datensatze
chern von Bestellungen und eine fiir die entsprechen- aus Bild 2 hinzu.

den Bestellpositionen. Die Tabelle der Bestellungen
enthdlt ein Primérschlisselfeld, welches die erste

. . . . o] . —
Voraussetzung fiir ein konsistentes Datenmodell ist — 3 Bezichungen 0o x
somit kdnnen alle Datensatze dieser Tabelle eindeutig ;
identifiziert werden. thlBestellungen thiBestellpositionen
¥ BestellunglD ¥ BestelipositioniD
. . .\ . Bestelldatum BestellunglD
Auch die Tabelle der Bestellpositionen enthalt ein sol- Kunde Bestellposition

ches Primarschliisselfeld. Neben den (ibrigen, typischen
Feldern fiir eine Bestellposition enthalt diese auch ein
Feld, mit dem wir die Bestellposition einer Bestellung =

zuordnen koénnen — nennen wir es BestellungID. L =
Bild 1: Tabellen der Beispieldatenbank

Grundsatzlich ist die Zuordnung von Bestellpositionen
zu einer Bestellung also gewdhrleistet. Aber welche

Probleme kdnnen auftreten, wenn wir keine referenzielle =3 tblBestellungen - B
Integritét definieren? BestellunglD ~ | Bestelldatum -~ Kunde + | Zum Hin
| 1 01.01.2026 André Minhorst
. . 2 02.01.2026 Klaus Muller
Probleme bei fehlender Beziehung oder ohne * (Neu)
referenzielle Integritat
Schauen wir uns das Datenmodell aus Bild 1 an. Hier
sehen wir die beiden Tabellen, anhand derer wir die Vor- Datensatz 4 4 [3von 3 M suchen
teile der referenziellen Integritit beschreiben wollen. Bild 2: Beispieldaten in der Tabelle thiBestellungen

Seite 2 www.access-im-unternehmen.de/1586

TABELLEN UND DATENMODELLIERUNG

WARUM BEZIEHUNGEN MIT REFERENZIELLER INTEGRITAT?

ACCESS

In der Tabe”e thBeste"' E frmBestellungen - O X
pOSitionen IegenWirnun R I A R R T R Y R R R L R R L A
. ™. o . # Detailbereich
eine Bestellposition fiir die - SeT—
erste Bestellung an, indem) Bestelldatum
wir das Feld BestellunglD ; || [eunce] Kunde
auf den Wert 1 einstel- - gefmBestellungen:
. 3 I T T S S N AT I ERR T
len, also auf die erste || T y———
Bestellung der Tabelle 1B
thiBestellungen. Soweit 3| | estelipontionid]sestelpostionto Eigenschaftenblat ox
. i . N _Bes:e unglD BestellunglD
|St daS keln Problem - dle] 2 - . . Auswahltyp: Unterformular/-bericht A
. . . 2 Bestellposition zl
Bestellposition ist einer a1l (B simBestelungen -
Beste”ung ZUQGOI‘dﬂG’[=il : Format Daten Ereignis Andere Alle
4
8; 4_ Herkunftsobjekt sfmBestellungen ()
é Verkndpfen nach BestellunglD
H B Verknipfen von BestellunglD
Das deCken WIr norma- T Lee!'e.n Eiauptentwurffiltern Ja ¢
lerweise ab, indem wir B ———————————————— 2:‘5';'::{ 2

jeweils eine Bestellung

in einem Hauptformular
abbilden und in einem
Unterformular die Bestellpositionen. Wenn der Name des
Fremdschllsselfelds in der Tabelle des Unterformulars
mit dem des Primarschliisselfelds in der Datensatzquelle
des Hauptformulars tibereinstimmt, erkennt Access dies
sogar beim Hinzufiigen des Unterformulars und tréagt
dies korrekt in die Eigenschaften Verkniipfen nach und
Verkniipfen von des Unterformular-Steuerelements ein
(siehe Bild 3).

Damit ordnet das Formular neue Bestellpositionen, die
wir in das Unterformular eintragen, automatisch dem
Bestelldatensatz im Hauptformular zu, weil das Fremd-
schliisselfeld BestellunglD direkt mit dem entsprechen-
den Primarschliisselwert aus dem Hauptformular gefiillt
wird.

Bei 99 % der ausgewerteten Anwendungen
funktionierte dies nicht!

Auch wenn dies eine scheinbare Sicherheit vorgaukelt:
In unseren Untersuchungen von Kundendatenbanken
haben wir bei fast allen Anwendungen herausgefunden,
dass dies nicht zuverlassig funktioniert. Die Griinde
daflir sind nicht genauer bekannt, weil die betroffenen

Bild 3: Bestellungen und Bestelldetails in Haupt- und Unterformular

Datensétze oft vor langer Zeit angelegt wurden. Aber: Wir
haben nahezu iiberall Probleme aufgedeckt, die zeigen,
dass Benutzer erfinderisch sind und Wege finden, um die
Zuordnung von Bestellungen und Bestellpositionen zu
unterminieren.

Dies zeigte sich in den folgenden Ergebnissen:

e Entweder haben wir Datensatze in der Tabelle thiBe—
stellpositionen gefunden, die einen Fremdschliissel-
wert aufweisen, der in der Tabelle thiBestellungen
nicht mehr vorhanden war (oder nie gewesen ist). Das
heiBt, dass entweder Bestellungen geléscht wurden,
ohne dass die entsprechenden Eintrage in thiBestell-
positionen auch entfernt wurden (wahrscheinlichere
Variante), oder die Benutzer es geschafft haben,
Fremdschliisselwerte einzutragen, fliir die es kein
Pendant im Primarschlisselfeld der Tabelle thiBestel-
lungen gab.

e Oder wir haben Eintrage in der Tabelle tbiBestellpo-
sitionen gefunden, die im Fremdschliisselfeld Bestel-
lunglID den Wert NULL enthielten, also leer waren.

www.access-im-unternehmen.de/1586

Seite 3

TABELLEN UND DATENMODELLIERUNG
WARUM BEZIEHUNGEN MIT REFERENZIELLER INTEGRITAT?

Beides ist ungiinstig, denn es wurden scheinbar einmal
Bestellungen plus Bestellpositionen eingetragen, die
dann nicht zur Ausfithrung kamen und somit potenziell
den Umsatz vermindert haben.

Dies kann passieren, wenn entweder das Formular nicht
sauber programmiert und mit entsprechenden Validie-
rungen ausgestattet wurde oder wenn die Benutzer
Wege gefunden haben, die Daten direkt in den zugrunde
liegenden Tabellen zu manipulieren und entweder Be-
stelldatensatze geldscht oder Bestellpositionen verandert
haben.

Die Losung ist also zum Beispiel, die Anwendung so
sicher zu machen, dass derartige Manipulationen
nicht mehr moglich sind. Dazu muss das Formular vor
Fehleingaben geschiitzt werden und/oder man muss
verhindern, dass die Benutzer direkten Zugriff auf die
Tabellen erhalten und so die Daten direkt in den Tabel-
len manipulieren.

Dies war in den meisten Anwendungen nicht der Fall,
auch wenn die Entwickler uns glaubhaft machen wollten,
dass sie alle notwendigen MaBnahmen getroffen hatten.

Es gibt jedoch noch eine einfachere Mdglichkeit, um si-
cherzustellen, dass es keine Datensétze in einer Tabelle
wie tbiBestellpositionen gibt, die keiner Bestellung
zugeordnet sind. Dabei handelt es sich um

welche die Werte im Fremdschllisselfeld BestellungID in
der Tabelle thiBestellpositionen auf die folgenden Werte
einschrankt:

e Es sind alle Werte erlaubt, die im Primarschliisselfeld
der verkniipften Tabelle vorhanden sind.

e Und zusatzlich kann, wenn wir dies nicht anderweitig
unterbinden, der Wert NULL vorliegen.

Letzteres konnen wir verhindern, indem wir die Eigen-
schaft Eingabe erforderlich flir das Fremdschlisselfeld
auf Ja einstellen. Das ist sinnvoll, um auch diese Liicke zu
schlieBen. Es gibt jedoch Félle abseits von Bestellungen
und Bestellpositionen, wo man vielleicht erst die Daten-
satze in der Tabelle mit dem Fremdschliisselfeld anlegt
und diese erst spater zuordnen mdchte — dann kann man
NULL-Werte zulassen.

Hier sollte man jedoch regelmaBig prifen, ob sich keine
nicht zugeordneten Datensétze in dieser Tabelle befin-
den.

Wenn wir keine referenzielle Integritat festlegen, konnen
wir eine Bestellposition zur Tabelle thiBestellpositionen
hinzufiigen, die einen Wert im Feld BestellunglD enthalt,
der nicht in der Tabelle thiBestellungen enthalten ist
(siehe Bild 4).

das Anlegen einer Beziehung zwischen den

Tabellen (falls bisher nicht vorhanden) und &3 toiBestellungen - b x
die Festlegung von referenzieller Integritat fiir BestellunglD - | Bestelldatum - | Kunde -
.) 1 01.01.2026 André Minhorst
diese Beziehung. 2 02.01.2026 Klaus Miiller
* == I3 tblBestellpositionen - O X
Funktion der refereHZie"en Integritat Batensaininiimlal 1 vON 2 jmbemklah BestellunglD - | Bestellposition - |Zum Hinzufiige

Wenn wir referenzielle Integritat definieren,
aktivieren wir zwei wichtige Funktionen fiir die
Beziehung. Nehmen wir als Beispiel wieder die
Beziehung zwischen der Tabelle thiBestellun-
gen und tbiBestellpositionen. Wir fiigen mit der

1 Beispielposition 1
1 Beispielposition 2
2 Beispielposition 3
12 Beispielposition 4
#* 0

Datensatz 4 4 [dvond | b M » Suchen

referenziellen Integritét eine Restriktion hinzu,

Bild 4: Bestellposition ohne passende Bestellung

Seite 4 www.access-im-unternehmen.de/1586

TABELLEN UND DATENMODELLIERUNG

WARUM BEZIEHUNGEN MIT REFERENZIELLER INTEGRITAT?

ACCESS

Wenn keine referenzielle

Integritat festgelegt werden

kann

Wir versuchen nun, eine Bezie-
hung mit referenzieller Integritat
flir die Tabellen anzulegen. Dazu
ziehen wir im Beziehungen-Fens-
ter das Feld BestellungID der
Tabelle thiBestellpositionen auf

die Tabelle thiBestellungen. Es
erscheint der Dialog Beziehungen
bearbeiten, wo wir die Option Mit
referenzieller Integritét aktivie-
ren (siehe Bild 5).

Wenn wir jetzt auf Erstellen
klicken, erhalten wir die Fehler-

35 Beziehungen - O x
-
thlBestellungen tblBestellpositionen
BestellunglD % BestellpasitionID
Bestelldatum BestellunglD
Kunde Bestellposition
Beziehungen bearbeiten ? >
Tabelle/Abfrage: Verwandte Tabelle/Abfrage: Erstellen
tbiBestellungen tblBestellpositionen *
‘ Abbrechen
BestellunglD ~ BestellunglD
I Verknidpfungstyp...

- ; L Meue erstellen...
Mit referentieller Integritdt

I:IAktualisierungsweitergabe an verwandte Felder

[] Laschweitergabe an verwandte Datensitze

Beziehungstyp: 1:n

meldung aus Bild 6. Der Grund ist
offensichtlich: Wir haben in der
Tabelle thiBestellpositionen Werte im Feld BestellungID,
die in der Tabelle thiBestellungen nicht vorhanden sind.

Dies ist der einfachste Test, um zu priifen, ob alle Daten-
satze aus thiBestellpositionen korrekt der Tabelle
thiBestellungen zugeordnet sind.

Etwas schwieriger wird es, im Anschluss herauszufinden,
welche der Datenséatze der Tabelle thiBestellpositionen

das Definieren referenzieller Integritat verhindern — dazu

weiter unten mehr.

Erfolgreiches Festlegen referenzieller Integritat
In diesem Fall I6schen wir einfach den Datensatz, der auf
die nicht vorhandene Bestellung mit dem Wert 12 im Feld
BestellunglD verweist. Danach konnen wir die referen-
zielle Integritat fiir diese Tabelle aktivieren.

Das Ergebnis sehen wir in Bild 7. Dass es sich um eine
Beziehung mit referenzieller Integritat handelt, erkennen
wir am Unendlich-Symbol auf der einen und der Pfeilspit-
ze auf der anderen Seite.

Bild 5: Versuch, referenzielle Integritét zu definieren

Microsoft Access

Microsoft Access kann diese Beziehung nicht herstellen,
wenn referenzielle Integritdt erzwungen wird,

Ia”i"‘\l In der Tabelle 'tbiBestellpositionen’ gibt es Daten,
./ die gegen die Regeln fir referenzielle Integritat
verstalien,
Dies ist z.B. der Fall, wenn es in der verwandten
[werknipften) Tabelle Datensdtze zu einer
Angestellten gibt, in der Primartabelle aber kein
Datensatz fir die Angestellte vorhanden ist,

Andern Sie die Daten so, dass es in der
Primértabelle Datensitze fur alle verwandten
Datensatze gibt.

Wenn Sie die Beziehung so herstellen méachten,
dass die Regeln fir referenzielle Integritdt nicht
beachtet werden, missen Sie das Kontrollkdstchen
‘Mit referenzieller Integritdt’ deaktivieren.

=

Bild 6: Fehlermeldung beim Versuch, referenzielle Integritat zu
definieren

www.access-im-unternehmen.de/1586 Seite 5

TABELLEN UND DATENMODELLIERUNG
REFLEXIVE 1:N-BEZIEHUNG ZU M:N-BEZIEHUNG

Reflexive 1:n-Beziehung zu m:n-Beziehung

Manchmal legt man eine 1:n-Beziehung zwischen zwei Tabellen an, um spater festzu-

stellen, dass eine m:n-Beziehung doch die funktionalere Variante ist. Ein Beispiel sind
reflexive Beziehungen, mit denen man etwa Vater-Kind-Beziehungen abbildet oder Part-
ner-Beziehungen. Andere Beispiele sind solche wie zwischen Produkten und Kategorien
- man dachte zunachst, dass es reicht, wenn man jedes Produkt nur einer Kategorie zu-
ordnen kann, aber man dann erkennt, dass es fiir verschiedene Anwendungsfélle doch
glinstiger ware, wenn man ein Produkt mehr als einer Kategorie zuordnen kann. Ahn-
liche Falle sind Mitarbeiter und Funktionen oder Abteilungen. In diesem Beitrag schau-
en wir uns das Beispiel eines Kunden an, der in seinem Sportverein partnerschaftliche
Beziehungen tiber ein Fremdschliisselfeld der Tabelle tbIMitglieder auf diese selbst ab-
gebildet hat. Hier gab es mehrere Griinde, um diese Beziehung in eine m:n-Beziehung
umzuwandeln. Welche das sind und wie wir die Umwandlung durchgefihrt haben, lesen
Sie in diesem Beitrag.

Das Abbilden von reflexiven Beziehungen tiber eine das Feld Ehepartner den gleichen Wert enthalten. Ande-
1:n-Beziehung ist an sich nicht falsch. Im Beispiel geht renfalls erhalten wir einen Fall von inkonsistenten Daten.
es um einen Sportverein, dessen Mitglieder mit einer

Access-Datenbank verwaltet werden. In der Tabelle Diese Inkonsistenz kann nicht nur den Fall enthalten,
tbIMitglieder gibt es zwei Felder, um die partnerschaft- dass die Beziehung nur in einer Richtung dokumentiert
liche Beziehung zwischen zwei Mitgliedern abzubilden. ist, etwa von Mitglied A zu Mitglied B. Es kann auch

Das erste heiBt PartnerlD und dient dazu, die ID eines passieren, dass nicht nur Mitglied B als Partner von Mit-

anderen Datensatzes dieser Tabelle zu referen-

zieren und damit anzugeben, welches andere] whtegieder _ 0 x
M|tgl|ed mit diesem Mltglled verbunden ist. Feldname Felddatentyp Beschreibung (optional) a

T . . u ® mitgliediD AutoWert Primarschliisselfeld der Tabelle '
ZusatZ“Ch glbt €s ein Ja/NeIn-FeId namens Vorname Kurzer Text Varname des Mitglieds
Ehepartner, das angibt, ob es sich um eine Plachname urzer Text aciname des Mitglleds

artner| a es Hartners
amtlich dokumentierte Beziehung handelt, Ehepaar Ja/Nein Angabe, ob Ehepaar
g
sprich um eine eheliche Beziehung (Ja) oder Feldelgenschaten ’
um eine Beziehung ohne Trauschein (Nein). Der Allgemein Nachschlagen
. . Feldgroke Long Integer
Entwurf der Tabelle sieht in abgespeckter Form Neus werte inkrement
. . Format
wie in Bild 1 aus. Beschriftung
Indiziert Ja (Ohne Duplikate]
Textausrichtung Standard Ein Feldname kann bis zu 64 Zeichen lang
sein, einsch!ieBIich Leerzeichen, Dricken Sie

Das erste Problem, das sich daraus ergibt, ist Fl. um Fiffe 20 Feldnzmen zu erhaiten.
die wechselseitige Abhangigkeit. Wenn wir flir
Mitglied A das Mitglied B als Partner festgelegt
haben, missen wir fiir Mitglied B auch Mitglied

A als Partner hinterlegen — und fiir beide muss Bild 1: Entwurf der Tabelle thIMitglieder

Seite 10 www.access-im-unternehmen.de/1587

TABELLEN UND DATENMODELLIERUNG

REFLEXIVE 1:N-BEZIEHUNG ZU M:N-BEZIEHUNG

glied A angegeben wird, sondern auch noch Mitglied C
als Partner von Mitglied B. Es konnte auch vorkommen,
dass ein Mitglied als Ehepartner von mehreren anderen
Mitgliedern angegeben wird.

Das zweite Problem bei der Tabelle thIMitglieder bei
diesem Kunden war, dass bereits sehr viele andere
Tabellen auf die Tabelle thiMitglieder verwiesen hatten
und somit die Grenze von maximal 32 Beziehungen er-
reicht war.

Diese Grenze qilt fir Beziehungen, die iber ein Fremd-
schliisselfeld in dieser Tabelle hergestellt werden, wobei
wir hier sehr viele Lookup-Tabellen vorgefunden haben.

Die Beziehung war wie in Bild 2 aufgebaut, wobei das
Fremdschliisselfeld PartnerID auf das Feld MitgliedID
der gleichen Tabelle verweist.

Mehrere Partner fiir das gleiche Mitglied
verhindern

Die Maglichkeit, dass ein Mitglied fiir mehr als ein anderes
Mitglied als Partner ausgewéhlt wird, konnten wir durch
das Setzen eines eindeutigen Schllissels flr das Fremd-
schliisselfeld PartnerID erreichen.

Dadurch, dass nun jede MitgliedID nur einmal in das Feld
PartnerlID eingetragen werden konnte, stellen wir sicher,
dass es nur monogame Beziehungen gibt. Hier lassen wir
auBen vor, dass es Kulturen gibt, in denen dies mdglich ist.

ACCESS

g Beziehungen - d X
i
thiMitglieder .
¥ mMitgliediD g tblMitglieder_1
Vaorname % MitgliediD
Machname Varname
PartnerlD Machname
Ehepaar PartnerlD
Ehepaar
v
a= L

Bild 2: Reflexive Beziehung der Mitglieder

Nur eindeutige Partnerschaften erlauben

Wenn wir sicherstellen wollen, dass die in einer Part-
nerschaft befindlichen Mitglieder immer wechselseitig
miteinander verbunden werden, miissen wir das tber die
Anwendungslogik realisieren — allein (iber den Tabellen-
entwurf kdnnen wir das mit einem Fremdschliisselfeld,
das die gleiche Tabelle referenziert, nicht erreichen.

Wir miissen also im Formular zum Verwalten der Mit-
glieder eine VBA-Funktion einbauen, die beim Auswéhlen
des Partners eines Mitglieds automatisch auch das Feld
PartnerlD des Partners einstellt — und die auch den glei-
chen Wert im Ja/Nein-Feld Ehepaar flr die verkniipften
Datensatze festlegt.

Im Entwurf der Tabelle thiMitglieder haben wir fiir das
Fremdschlisselfeld PartnerID ein Nachschlagefeld

Auswahl einer Beziehung mit sich T tbiMitglieder - o X
selbst verhindern MitgliedlD ~| Vorname - | Nachname - PartnerlD - | Ehepaar -

. . - . . . + 1 Klaus Miller [
Eine weitere mgglthe Fehleingabe ist die . 2 bermine Miller Clous Mialler &)
Auswahl des Mitglieds selbst als Partner. ¥ 3 Gerd Meier Hermine Miller]

+ 4 Emma Schmitz Gerd Meier O

. *] Emma Schmitz M
Dies konnen wir verhindern, indem wir (Neu) B
im Formular, das wir gleich beschreiben,
nur die anderen Datenséatze der Tabelle
tbiMitglieder anzeigen. Datensatz M4« |[Tvond | » M » Suchen <« >

Bild 3: Auswabhlfeld fiir den Partner

Seite 11

www.access-im-unternehmen.de/1587

ACCESS

definiert, damit man den Partner einfach auswéahlen kann
(siehe Bild 3).

Formular zum Verwalten der Mitglieder und
Partnerschaften

Um die Mitglieder zu verwalten und die Partner zuordnen
zu konnen, haben wir ein Formular wie in Bild 4 vorgefun-
den.

Fiir das Steuerelement choPartnerlD haben wir zundchst
die folgende Datensatzherkunft eingestellt, um aus allen
Mitgliedern auswéhlen zu konnen:

SELECT MitgliedID, Vorname & " ' & Nachname
FROM tbIMitglieder

Damit beim Anzeigen eines Datensatzes nicht das aktuelle
Mitglied selbst erscheint und auch nicht solche Mitglieder,
die bereits einer Partnerschaft zugeordnet sind, haben wir
fiir das Ereignis Beim Anzeigen die folgende Prozedur
hinterlegt:

Private Sub Form Current()
Me.cboPartnerID.RowSource = "SELECT MitgliedID, " _

& "Vorname & ' ' & Nachname FROM tbIMitglieder " _

"WHERE NOT (MitgliedID = " & Me.MitgliedID & ") " _
" AND (MitgliedID NOT IN (" _

SELECT PartnerID FROM tbiMitglieder " _
WHERE PartnerID IS NOT NULL))"

End Sub

Fiir das Mitglied mit dem Wert 1 im Feld MitgliedID er-
halten wir so die folgende Abfrage:

SELECT MitgliedID, Vorname & ' ' & Nachname
FROM tbIMitglieder
WHERE NOT (MitgliedID = 1)
AND (MitgliedID NOT IN (
SELECT PartnerID FROM tbIMitglieder
WHERE PartnerID IS NOT NULL)

TABELLEN UND DATENMODELLIERUNG

REFLEXIVE 1:N-BEZIEHUNG ZU M:N-BEZIEHUNG

Z8] frmMitglieder - [} *

LRI I B - B R R A SE R B SR AU SR R BE ICRN - SN S SRR AN I IR
MitgliedID

] = Varname

- PartnerlD ~

:

4 v

4 »

Bild 4: Formular zur Mitgliederverwaltung

E frMitglieder — (] >
4 MitgliedID 1

Vorname Klaus

Nachname Miller

PartnerlD

Hermine Miller™
Gerd Meier
Emma Schmitz

Datensatz: 4 Tvond | B M » Suchen

Bild 5: Formular zur Mitgliederverwaltung in der Formularansicht

Damit erscheinen, wenn wir noch keinem Mitglied einen
Partner zugewiesen haben, flir jedes Mitglied nur die
aktuell verfligharen Partner im Feld choPartnerID — siehe
Bild 5.

Partnerschaft fiir den Partner einstellen

Wenn wir nun fiir das Mitglied mit dem Wert 1 im Feld
MitgliedID einen Partner auswéhlen, etwa den mit dem
Wert 2, soll fiir das Mitglied 2 das Mitglied 1 als Partner
eingestellt werden.

Dazu hinterlegen wir fiir das Ereignis Nach Aktualisie-
rung des Kombinationsfeldes choPartnerID die folgende
Prozedur:

Private Sub cboPartnerID AfterUpdate()
Dim db As DAO.Database
Set db = CurrentDb
db.Execute "UPDATE tbIMitglieder SET PartnerID = "

Seite 12 www.access-im-unternehmen.de/1587

TABELLEN UND DATENMODELLIERUNG

REFLEXIVE 1:N-BEZIEHUNG ZU M:N-BEZIEHUNG

& Me.MitgliedID & " WHERE MitgliedID = " _
& Me.cboPartnerID, dbFailOnError
End Sub

Die so ausgefiihrte Aktionsabfrage lautet beispielsweise:
UPDATE tb1Mitglieder SET PartnerID = 1 WHERE MitgliedID = 2

Damit erhalten wir das gewiinschte Ergebnis in der zu-
grunde liegenden Tabelle, aber wenn wir zum Datensatz
des gewdhlten Partners wechseln und dann zuriick, zeigt
das Kombinationsfeld nun fiir beide gar keinen Wert mehr
an. Das liegt daran, dass wir die bereits vergebenen Part-
ner vollsténdig ausschlieBen und diese somit auch fiir den
ausgewahlten Eintrag nicht mehr angezeigt werden. Das
Kombinationsfeld enthalt zwar den korrekten Eintrag, was
wir im Direktbereich mit folgender Anweisung ermitteln
konnen:

? Screen.ActiveControl.Value
2

Aber da der Eintrag nicht in der Datensatzherkunft des
Kombinationsfeldes enthalten ist, erscheint der Anzeige-
wert nicht.

Wir miissen die Datensatzherkunft also nochmals anpas-
sen, indem wir mit der OR-Klausel am Ende den gewahl-
ten Partner wieder mit in die Auswahl hineinnehmen —
hier der besseren Lesbarkeit halber direkt mit den Werten
1 fiir MitgliedID und 2 fiir PartneriD:

SELECT MitgliedID, Vorname & ' ' & Nachname

FROM tbIMitglieder

WHERE NOT (MitgliedID = 1) AND (MitgliedID NOT IN (
SELECT PartnerID FROM tbIMitglieder
WHERE PartnerID IS NOT NULL)

OR MitgliedID = 2)

Damit sehen wir nun den ausgewéhlten Partner sowohl
fiir den ersten als auch fiir den zweiten Datensatz. In der

ACCESS

OR-Bedingung sorgen wir auBerdem mit der Nz-Funktion
dafiir, dass im Falle des Wertes NULL im Feld PartnerlD
der Wert 0 verwendet wird — sonst erhalten wir beim
Wechsel von einem Datensatz ohne PartnerID zu einem
anderen Datensatz einen Fehler.

SchlieBlich miissen wir auch noch dafiir sorgen, dass der
Wert fiir das Feld Ehepaar flir das als Partner angegebene
Mitglied so einstellen wie fiir das Mitglied selbst. Dazu
fligen wir eine Prozedur fiir das Ereignis Nach Aktualisie-
rung des Kontrollkéstchens chkEhepaar hinzu:

Private Sub chkEhepaar AfterUpdate()
Dim db As DAO.Database
Set db = CurrentDb
db.Execute "UPDATE tbIMitglieder SET Ehepaar = " _
& IIf(Me.chkEhepaar = True. "True". "False") _
& " WHERE MitgliedID = " & Me.cboPartnerID, _
dbFailOnkrror
End Sub

Warum auf m:n-Beziehung umstellen?

Eingangs haben wir erwahnt, dass sich viele der hier
beschriebenen Probleme beheben lassen, wenn wir die
reflexive Beziehung (iber die 1:n-Verkniipfung aufheben,
die Felder PartnerlD und Ehepaar entfernen und beides
in eine m:n-Beziehung auslagern.

Wir schauen uns erst einmal an, wie die Verkniipfungs-
tabelle aussieht und wie wir diese mit der Tabelle thIMit-
glieder verkniipfen. Damit das Beispiel mit der reflexiven
1:n-Beziehung erhalten bleibt, erstellen wir in der Bei-
spieldatenbank eine Kopie der Tabelle thiMitglieder (siehe
Bild 6) unter dem Namen tbiMitgliederMN. AuBerdem
fligen wir die Tabelle thlPartnerschaften hinzu, die fol-
gende Felder enthélt:

¢ PartnerschaftlD: Primarschlisselfeld der Tabelle

¢ PartnerA: Erster Partner, Fremdschliisselfeld zur Tabel-
le thiMitglieder, eindeutiger Index, Eingabe erforderlich

Seite 13

www.access-im-unternehmen.de/1587

TABELLEN UND DATENMODELLIERUNG
REFLEXIVE 1:N-BEZIEHUNG ZU M:N-BEZIEHUNG

e PartnerB: Zweiter Partner, Fremdschliisselfeld zur = iblMitglieder - oo
. . i i i MitgliedID - | Vorname - Nachname - PartnerlD ~| Ehepaar -~
Tabelle thiMitglieder, eindeutiger Index, Eingabe er- & 1 Klaus Miller Hermine Maller
f d I h £ 2 Hermine Maller Klaus Maller
orderfic E2 3 Gerd Meier Emma Schmitz O
& 4 Emma Schmitz Gerd Meier O
. . . . & 5 Hermann Ganther (]
¢ Ehepaar: Ja/Nein-Feld, das angibt, ob es sich um ein g 6 Lisa Herrmann O
* {Neu) (]
Ehepaar handelt
Datensatz: 4 4 S3voné | b M b Suchen 4 G LJ
Dadurch, dass wir einen eindeutigen Index auf die Felder Bild 6: Aktueller Zustand der Daten in der Tabelle tbiMitglieder
PartnerA und PartnerB legen, stellen wir sicher,
dass jedes Mitglied nur einmal als PartnerA oder =] toPerterschafion _ o0 x
PartnerB angegeben werden kann. Feldname Felddatentyp Beschreibung (optional) -
B | partnerschaftiD AutoWert '
PartnerA Zahl
Wir haben allerdings noch eine kleine Liicke: PartnerB Zahl
. " . . . 1. Ehepaar Ja/Nein
Wir konnen die Kombination aus Mitglied 1 .
und Mitglied 2 immer noch zweimal angeben Feldeigenschaften
— einmal mit dem Wert 1 im Feld PartnerA GUEFEIGI e ey Eigenschaftenblatt VX
und 2 in PartnerB und umgekehrt. AuBer- ey bseneenadeen
dem kénnen wir theoretisch auch Mitglied Allgemein
. . Schreibgeschitzt wenn keine '|Mein
1 sowohl in das Feld PartnerA als auch in Unierdatenblat cnweitert__|Nein
PartnerB e|ngeben ;.usrihcht.zng Von links nach rechts v
eschreibung
m’ eSS
. . L. . . . (Galtigkeitsregel [Partnera]<[PartnerB] I
Dies verhindern wir, indem wir fiir die Tabelle sl s
eine Glltigkeitsregel anlegen, die wir wie in Sotier ek —— Gtomatid
Bild 7 definieren. Yerknipten von
Eeim Laden filtern Mein
Eeim Laden sortieren la
Wenn wir nun eine Partnerschaft eingeben, bei
welcher der Wert von PartnerA kleiner oder Bild 7: Tabelle thiPartnerschaften
gleich der von PartnerB ist, erhalten wir die
Meldung aus B|Id 8. EH thlPartnerschaften - O *
Partnerscha -~ PartnerA - | PartnerB - | Ehepaar -~ Zum Hinzufigen klick:
Diese Regel ist nur fir den Fall vorgesehen, dass | ; ; i :::
jemand versucht, Daten direkt uber die Tabelle * {Neu) 0
einzugeben. Das eigentliche Anlegen erledigen g \
wir ohnehin (iber das Formular. X

Microsoft Access
Beziehung zwischen Mitgliedern und

Ein oder mehrere eingegebene Werte verstofien

PartnerSChaften FARN gegen die Giltigkeitsregel ‘[PartnerA]<[PartnerB]’,
. o . die fir 'tbIPartnerschaften’ festgelegt wurde,
Damit nur Werte aus dem Primarschlisselfeld Geben Sie einen Wert ein, der im Ausdruck fir
. . . dieses Feld verarbeitet werden kann,
der Tabelle thiMitglieder eingegeben werden

konnen, fiigen wir dem Datenmodell die beiden | ok |
Beziehungen aus Bild 9 hinzu.

Datensatz: WM 4 Zvon2 | b M # D Suchen < G [

Bild 8: Meldung beim Eingeben ungiiltiger Daten

Seite 14 www.access-im-unternehmen.de/1587

TABELLEN UND DATENMODELLIERUNG

REFLEXIVE 1:N-BEZIEHUNG ZU M:N-BEZIEHUNG

ACCESS

Wichtig ist hier die Rich- 22 Bezichungen - o X
tung, in der wir die Be- a
ziehungspfeile ziehen. Da thiMitgliederMN thiMitgliederhMN_1 .
die beiden Felder PartnerA B MitgliediD — | thlPartnerschaften ¥ MitgiieaD
b Vorname | ¥ Part hartD Varname
und PartnerB mit einem Nachname | Nachname
eindeutigen Index ver- PartneriD Partners .
. i Ehepaar Eh

sehen wurden, miissen wir —
den Pfeil von thiMitglieder | e P
auf thPartnerschaften Tabelle/Abfrage: Verwandte Tabelle/Abfrage: oK]

. . . . thiMitgliederhN_1 ~ thlPartnerschaften e [:§
ziehen, sodass die Mitglie-
dertabell ter Tabelle/ MitgliedID ~ PartnerB Abbrechen

ertapelle un e.r abelie | Verknapfungstyp...
Abfrage und die Partner-
SChaﬁStabe”e Unter ver_ Mit referentieller Integritat Neue erstellen...

|| Aktualisierungsweitergabe an verwandte Felder
Wandte Tabe"e/Abfrage o G [Léschweitergabe an verwandte Datensitze
angegeben wird.
Beziehungstyp: 11

Entsprechend konnten wir
keine referenzielle Integritat
fiir die Beziehungen festlegen, da dann das Feld Mit-
gliedID der Tabelle thiMitglieder als Fremdschlisselfeld
betrachtet wiirde und es darin Werte gibt, die zurzeit noch
nicht im Feld PartnerA oder PartnerB der Tabelle thiPart-
nerschaften enthalten sind.

Daten migrieren

Es gibt bereits eingetragene Partnerschaften in der Tabelle
thiMitarbeiterMN, die wir nun (ber die Verkniipfungsta-
belle tbIPartnerschaften abbilden wollen.

Das ist anspruchsvoll, weil wir die Partnerschaften so
eintragen miissen, dass der Wert im Feld PartnerA immer
kleiner als der in PartnerB ist. Wir konnten starten, in-
dem wir die Partnerschaften aufsteigend nach der ID des
Mitglieds sortieren und zusatzlich die PartnerlD und den
Ehepaar-Status mit folgender Abfrage ausgeben lassen:

SELECT
tbIMitgliederMN.MitgliedID,
tbIMitgliederMN.PartnerID,
tbIMitgliederMN.Ehepaar

FROM

www.access-im-unternehmen.de/1587

Bild 9: Beziehungen fiir die Verwaltung von Partnerschaften per m:n-Beziehung

tbIMitgliederMN
WHERE

(((tbIMitgliederMN.PartnerID) IS NOT NULL))
ORDER BY

thIMitgliederMN.MitgliedID;

Dies liefert jede Partnerschaft in doppelter Ausfiihrung,
jeweils einmal mit jeder Mitglieds-ID im Feld MitgliedID
und einmal im Feld PartnerID (siehe Bild 10).

Wenn wir hier allerdings den Ausdruck, den wir als Giiltig-
keitsregel fir die Tabelle thiPartnerschaften verwendet
haben, als Kriterium einsetzen, erhalten wir jede Partner-
schaft nur noch einmal:

= qry&llePartnerschaften - (] >
MitgliedID ~ PartnerlD + | Ehepaar -~
1 2]
2 1 a
3 4 O
a 3 O
* (Neu) O

Datensatz: M 1vond | b H F Suchen

Bild 10: Ausgabe aller Partnerschaften laut thiMitgliederMN

Seite 15

ACCESS

SELECT
tbIMitgliederMN.MitgliedID,
tbIMitgliederMN.PartnerlID,
thIMitgliederMN.Ehepaar
FROM
tbIMitgliederMN
WHERE
(
((tbIMitgliederMN.MitgliedID) < [PartnerID])
AND ((thbTMitgliederMN.PartnerID) IS NOT NULL)
)
ORDER BY
thIMitgliederMN.MitgliedID;

Fiir diese Abfrage aktivieren wir nun den Abfragetyp
Anfiigen und geben als Zieltabelle die Tabelle thiPart-
nerschaften an. Im Entwurf weisen wir das Feld Mit-
gliedID dem Feld PartnerA und das Feld PartnerID dem
Feld PartnerB hinzu. Das Feld Ehepaar weisen wir dem
gleichnamigen Feld der Tabelle thiPartnerschaften zu
(siehe Bild 11).

Fiihren wir diese Abfrage aus, erhalten wir das Ergebnis

aus Bild 12. Durch das Kriterium landen auch nur giiltige
Datensétze in dieser Abfrage — sollte die Tabelle thiMit-

gliederMN zuvor Datensétze enthalten haben, bei denen
PartnerA gleich PartnerB wére, oder es gabe inkonsis-

tente Daten, wiirden diese nicht angelegt werden.

TABELLEN UND DATENMODELLIERUNG

REFLEXIVE 1:N-BEZIEHUNG ZU M:N-BEZIEHUNG

= qryAllePartnerschaften - O >
a
thiMitgliederMN []
¥ mitgliediD
Varname
Machname
FartnerlD
Ehepaar
v
4 >
Feld: | MitgliedID PartnerlD Ehepaar i
Tabelle: |tbIMitgliederMN tbiMitgliederMM thiMitgliederMMN
Sortierung: | Aufsteigend
Anfiigen an: | PartnerA PartnerB ~ |Ehepaar
Kriterien: | <[PartnerlD] Ist Micht Mull
oder: v
4 & »
Bild 11: Anfligeabfrage fiir die Partnerschaftstabelle
5 thlPartnerschaften - O .
Partnerscha - PartnerA - | PartnerB - Ehepaar -
4 1 2
5 3 4 |
* (Neu)]
Datensatz M 4 3von 3 H Suchen

Bild 12: Ergebnis der Anfiigeabfrage

steuern. Allerdings bietet Access auch noch die Daten-
makros an. Wie wir damit auch die letzte magliche
Fehleingabe verhindern, zeigen wir in den folgenden
Abschnitten.

Es ist allerdings nicht aus-

. . . (2] E[l < Access
zuschlieBen, dass fiir Mit- _
X i Datei Start Erstellen Externe Daten
glied 1 eine Partnerschaft ﬁ o
mlt Mltglled 2 angelegt Tabelleneigenschaften V:lr/ \l’c‘ul—

J

Datenbanktools Add-Ins Hilfe Optionen Tabelle Felder — Tabelle 2 wad
E
e = T
L5 Lk B s B
Mach Mach Mach Benanntes Bezichungen Objektabhingigkeiten <

war und fur Mltg“ed 2 .ﬁ-\nderung Laschung Einfiigung Alktualisierung Léschung Makro ~
. . Eigenschaften Vorabereignisse Machfolgeereignisse Benannte Makros Beziehungen
eine Partnerschaft mit
. . . . Alle ACCESS‘O... @ < EH tblPartnerschaften
Mltg“ed 3 D|eS konnen |5UChE"--- /O| Partnerscha - | PartnerA - | PartnerB - | Ehepaar - Zum Hinzufligen klicken -
wir Uber das Datenmodell Tabellen ~ 4 1 2
i itglieder 5 3 4 [
in der aktuellen Form) e * (Neu) Ol
. . = tbIMitgliederMN -
nicht ausschlieBen und [toPortnerschatten |
mussten es letztlich tber i o MU U S O S S U

die Anwendungslogik

Bild 13: Datenmakro fiir das Ereignis Vor Anderung anlegen

Seite 16 www.access-im-unternehmen.de/1587

MIT FORMULAREN ARBEITEN
ERLEDIGT-STATUS IN HAUPT- UND UNTERFORMULAR SYNCHRON

Erledigt-Status in Haupt- und Unterformular synchron

Ein Kunde hatte neulich die Anforderung, dass er Produktionsauftrage mit den zu pro-
duzierenden Teilen im Haupt- und Unterformular abbilden wollte. An sich kein Prob-
lem, wenn man Haupt- und Unterformular entsprechend verknipft. Er wiinschte sich
jedoch sowohl in der Tabelle der Produktionsauftrage als auch in der fiir die Teile jeweils
ein Kontrollkdstchen, das den Status abbildet. Wenn der vollstandige Auftrag erledigt
ist, soll dieser samt Teileliste einen Haken erhalten. Ist der Auftrag noch offen, sind
alle Kontrollkastchen leer. Aber wenn nicht alle Teile fertig produziert sind, sollte dies
im Produktionsauftrag auf eine spezielle Art gekennzeichnet werden. Er hat dabei den
Dreifachstatus des Kontrollkastchens entdeckt und wiinschte sich, dass das Kontroll-
kdstchen in diesem Fall fiir den Produktionsauftrag den dritten Status anzeigt - in ak-
tuellen Access-Versionen ein gefiilltes Kontrollkastchen mit einem Minus-Zeichen. Wie

das gelingt und wie wir die Zustande von Produktionsauftrag und Teilen synchron hal-
ten, zeigen wir in diesem Beitrag.

E tblProduktionsauftraege - [m] at
Dateande"))) Feldname Felddatentyp Beschreibung (optional) -
Zunachst stellen wir die beiden Tabellen % | ProduktionsauftragiD AutoWert Primérschliisselfeld der Tabelle]
i . . . Produktionsauftrag Kurzer Text Bezeichnung des Produktionsauftrags
zusammen, mit denen wir die Produktions- Erledigt Ja/Nein Gibt an, ob der Produktionsauftrag erledigt ist.
auftrage und die enthaltenen, zu fertigenden aceigenschatien *
Telle VerW8|ten Allgemein Nachschlagen
Format Ja/Mein
Eeschriftung
. . = Standardwert Mein Ein Ausdruck, der die Werte einschrankt, die in
Dle erSte Tabe”e helBt tb'PrOdUktlonsan- Glltigkeitsregel b dss Fesl_d |Ei‘|l'1gegi:?;r1rveg:ielpglr.‘::njtnenlﬁ |
. . Gultigkeitsmeldung rucken slie . LIPL'II EII- :;ELIn ultigkertsregein
traege und soll die Felder aus Bild 1 ent- et ten ehalten
halten. Neben dem Primarschlisselfeld und
dem Feld flr die Bezeichnung des Produk-
tionsauftrags finden wir das Ja/Nein-Feld
Erledigt. Bild 1: Tabelle fiir die Produktionsauftrage
. . . = roduktionsteile - a X
Die zweite Tabelle namens thiProduktions- Hredutonad : :
. o . Feldname Felddatentyp Beschreibung (optional) A
te||e enthalt ahn“che Felder, aISO auch daS ® | ProduktionsteillD AutoWert Priméarschlisselfeld der Tabelle "
. . . Produktionsteil Kurzer Text Bezeichnung des zu produzierenden Teils
Feld Erledlgt mit dem Datentyp Ja/Neln. Erledigt Ja/Nein Angabe, ob Produktion erledigt ist
AUBerdem ﬁnden Wil‘ h|er nOCh daS Feld ProduktionsauftraglD Zahl Fremdschlisselfeld zur Tabelle tblProduktionsauftraege
v
ProduktionsauftragID, mit dem wir das zu Felgelgensenarten
. . . ™ Allgemein achschlagen
produzierende Teil dem jeweiligen Produk- T e
thﬂSﬂUﬂrag ZUWGISBn kOnnen (Slehe Blld 2) 2::::2:.‘1”»\2# Mein E_in F?Idnan_w If_.ann bis u &4 Zeichen Iang
Chtigkaitimeieung U e Feldnamen ethaen.
Indiziert Mein
Zwischen den beiden Tabellen stellen wir Texausrichtung standare
uber das Fremdschliisselfeld Produktions-

Bild 2: Tabelle fiir die Produktionsteile

www.access-im-unternehmen.de/1588 Seite 25

MIT FORMULAREN ARBEITEN
ERLEDIGT-STATUS IN HAUPT- UND UNTERFORMULAR SYNCHRON

auftraglD eine Beziehung her und definieren 33 Bezichungen - u x

referenzielle Integritat zwischen den beiden a

Tabellen (Siehe Bild 3) thlProduktionsauftraege . . .
¥ ProduktionsauftragiD Z tblProdukdionsteile

. L. Produktionsauftrag ¥ ProduktionsteillD
Formulare fiir das Beispiel Erledigt Produktionsteil
Nun erstellen wir zunachst das Unter- Erledigt
. . . Produkti ftraglD
formular, das die Produktionsteile zu aiEeeEe

einem Produktionsauftrag anzeigen soll.
Dazu fligen wir einem leeren Formular die

Tabelle thIProduktionsteile als Datensatz- P . o
uelle hinzu und ziehen alle Felder auBer
a .] . Bild 3: Beziehung zwischen den beiden Tabellen
ProduktionsauftragID zur Detailansicht
hinzu.
58] sfmProduktionsauftraege - O *
Die Eigenschaft Standardansicht B ie e s e e e m ik A
legen wir auf den Wert Datenblatt ¥ Detailbereich [5%
. . . - Eigenschaftenblatt
fest. AnschlieBend speichern wir : ProduktionsteillD [ProduktionsteiliD] |, canityp: Formular 5l
das Formular unter dem Namen ; Produktionsteil —
- N armular L
sfmProduktionsauftraege und g Bferiedigt]
- Format Daten Ereignis Andere Alle
SChIIeBen eS (Slehe Blld 4). 3 Beschriftung
4 Standardansicht Datenblatt v I
F-:urmularansicht zulassen Ja
Das Hauptformular erstellen wir et 8
auf dhnliche Weise, allerdings S e
verwenden wir hier die Tabelle
thProduktionsauftraege als Bild 4: Entwurf des Unterformulars
Datensatzquelle.
. K
: i Eigenschaftenblatt
ZUdem Zlehen wir hler nOCh das E frmProduktionsauftraege Auswahltyp: Unterformular/-bericht Al
soeben erstellte Unterformular —_————————————— z
sfmProduktionsauftraege in den # Detaitbercich mirodutionsautiseoe :
Deta||bere|Ch, SOdaSS daS ErgeanS _ ProduktionsauftraglD: |Produktic Format DﬂltEﬂ Ereignis Andere A”E.
L . . 1 Iw:‘mdukﬂonsauﬁrag Herkunfts-:ubJelct smer-:ud.uIr.tl-:unsauftraege o
wie In B||d 5 auSS|eht_ z d e Verknidpfen nach ProduktionsauftraglD
- _Er edigt: Verknapfen von ProduktionsauftraglD
2 ﬁe_ a Leeren E!auptentwurf filtern |Ja ¢
. . . - N — | Aktiviert Ja
Hier prdfen wir noch, ob die Eigen- 3 S et ri2ene3eue4i5.1.8. 1.7 Gespert Nein
schaften Verkniipfen von und ; [FERetaiereich ’
Verknijpfen nach fiir das Unter- — B ProduktionsteillD |ProduktionsteillD l
formular-Steuerelement korrekt ? 1 Produktionsteil
eingestellt wurden. o || 2 Bferiediet] v
NlE »
?_ v
AnschlieBend kénnen wir in die < >
Formularansicht wechseln und Bild 5: Entwurf des Hauptformulars

Seite 26 www.access-im-unternehmen.de/1588

MIT FORMULAREN ARBEITEN

ERLEDIGT-STATUS IN HAUPT- UND UNTERFORMULAR SYNCHRON

direkt einige Beispieldaten in Haupt- und Unter-

ACCESS

E frmProduktionsauftraege - O X

formular eingeben (siehe Bild 6). g

Erledigt-Status synchron halten

ProduktionsauftraglD:
Produktionsauftrag:
Erledigt: O

Produktionsteile:

1

Auftrag 1

Damit kommen wir zur eigentlichen Aufgabe: Produktions « | Produktionsteil - | Erledigt -
1 Teil 1-1 O
2 Teil 1-2 O
e Wenn der Benutzer nun das Feld Erledigt fiir 3 Teil 1-3 O
* (Neu) L]

den Produktionsauftrag im Hauptformular
markiert, sollen auch alle Eintrage im Unter-
formular markiert werden.

Datensatz 4 4 [dvon4d

Datensatz: M

1voni

L

Ll

Suchen

Suchen

Bild 6: Eingabe von Beispieldaten

e Wenn der Benutzer die Markierung dieses
Feldes aufhebt, sollen auch alle Eintrdge im
Unterformular abgewahlt werden.

e Setzt der Benutzer die Markierung fiir einen Eintrag im
Unterformular oder hebt diese auf, soll geprift wer-
den, ob aktuell alle Eintrage markiert sind oder auch
nur einige oder keiner. Sind alle Eintrage markiert, soll
auch das Feld Erledigt im Hauptformular einen Haken
erhalten. Wenn kein Haken markiert ist, soll Erledigt im
Hauptformular auch abgewénhlt werden. Und schlieBlich
fehlt noch der Fall, dass nur einige Eintrdge markiert
sind: Dann soll das Feld Erledigt im Hauptformular den
dritten Status eines Kontrollkdstchens erhalten.

als erledigt markiert werden. Um auf die Anderung des
Zustandes des Kontrollkdstchens chkErledigt im Haupt-
formular zu reagieren, hinterlegen wir eine Ereignisproze-
dur fiir das Ereignis Nach Aktualisierung (siehe Bild 7).

Dazu wahlen wir hier den Eintrag [Ereignisprozedur] aus
und klicken auf die Schaltflache mit den drei Punkten.

Die jetzt im VBA-Editor erscheinende Ereignisprozedur
flillen wir wie in Listing 1. Hier deklarieren wir ein Data-
base-0bjekt, das wir mit einem Verweis auf die aktuelle
Datenbank flillen, sowie eine Variable namens bolErle-

Wie das gelingt, beschreiben wir in den

nachsten Abschnitten.

Kontrollkdstchen umbenennen
Zuvor versehen wir die beiden Kontroll-
kastchen im Haupt- und Unterformular
jedoch noch mit einem entsprechenden
Préfix, hier chk fiir Checkbox (Kontroll-

kdstchen). Beide heiBen nun chkErledigt.

Produktionsauftrag als vollstandig
erledigt markieren

Wenn der Benutzer den Produktionsauf-
trag als erledigt kennzeichnet, sollen alle
Produktionsteile zu diesem Auftrag auch

Eei Fokusverlust
Eeim Doppelklicken
Eei Maustaste Ab

=3l frmProduktionsauftraege - a x
I N N R R R N - R
Detailbereich
z |3r-3d_1<.'.'-3’|sa_1f:rag D: |Produktic
1 |3r-3d_1<t'-3'|sa_1f:rag: Produktionsauftrag
T Erledge. | |
2; Produktionsteile: Eigenschaftenblatt b
é 1 1+1-2-1.3+1+8+1.5.| Puswahltyp: Kontrollkastchen %J«
4? _ # Detailbereich chkErledigh »
-IF ProduktionsteillD Produk| Format Daten Ereignis Andere Alle
: 1_ (¢ Produk| Beim Klicken
N Vor & — -
NIIE: BEed focn Artusisiering r— T |
4 Eei Fokuserhalt L%

Bild 7: Anlegen einer Ereignisprozedur fiir das Kontrollkéstchen

www.access-im-unternehmen.de/1588

Seite 27

ACCESS

MIT FORMULAREN ARBEITEN

ERLEDIGT-STATUS IN HAUPT- UND UNTERFORMULAR SYNCHRON

Private Sub chkErledigt AfterUpdate()
Dim db As DAO.Database
Dim bolErledigt As Boolean

Set db = CurrentDb

bolErledigt = Me.chkErledigt
db.Execute "UPDATE tblProduktionsteile SET Erledigt =
& Me.ProduktionsauftraglD, dbFailOnError
Me.sfmProduktionsauftraege.Form.Requery
End Sub

" & CInt(bolErledigt) & " WHERE ProduktionsauftraglD = "

Listing 1: Ubertragen der Markierung aus dem Hauptformular in das U

nterformular

digt, in die wir den aktuellen Zustand des

ZEI frrProduktionsauftraege

Kontrollkastchens chkErledigt aus dem £

Hauptformular einlesen.

Produkti

Produk

Dann fiihren wir eine Aktualisierungs-
abfrage aus, die flr alle Datensétze der
Tabelle thIProduktionsteile, die zum
aktuellen Produktionsauftrag gehaoren,
den Wert aus der Variablen bolErledigt
eintragt.

Datensatz: M

Datensatz: W

Dabei konvertieren wir den Wert des

ProduktionsauftragiD:

1

nsauftrag: |Auftrag 1
Produktions ~ | Produktionsteil ~| Erledigt -
H Teil 1-1
2 Teil 1-2]
3 Teil 1-3]
(Neu) O
Twon3 |k Mk suchen
Tvond1 | b kM » Suchen

Boolean-Feldes mit der CInt-Funktion
noch in den Datentyp Integer. Das ist
notig, da Boolean-Werte bei der Ausgabe als Wahr oder
Falsch ausgegeben werden und die SQL-Anweisung
damit nichts anfangen kann. Also transformieren wir den
Wert zuvor noch in -1 oder 0.

Danach aktualisieren wir noch die Daten im Unterformular
und erhalten das Ergebnis aus Bild 8.

Bild 8: Synchronisierte Daten in Haupt- und Unterformular

Hier stellt sich noch die Frage, ob wir dies ohne vorherige
Rickfrage durchfiinren wollen, wenn bereits einige Ein-
trdge im Unterformular abgehakt wurden.

Zur Sicherheit bauen wir also noch eine Meldung ein,
die wir aber nicht erst im Ereignis Nach Aktualisierung
aufrufen, sondern bereits im Ereignis Vor Aktualisierung

Private Sub chkErledigt BeforeUpdate(Cancel As Integer)

vbYesNo, "Status dndern") = vbNo Then
Cancel = True
End If
End Sub

If MsgBox("Dies setzt den Status Erledigt fur alle Teile auf '" & CBool(Me.chkErledigt) & "'.

Fortsetzen?", _

Listing 2: Riickfrage, ob die Anderung iibertragen werden soll

Seite 28 www.access-im-unternehmen.de/1588

DATENZUGRIFF PROGRAMMIEREN

ACCESS

Daten bearbeiten: Execute vs. Recordset in DAO

Es kommt regelmaBig vor, dass wir Daten in den Tabellen unserer Datenbank bearbeiten
miissen. Normalerweise geschieht das lber die Benutzeroberflache. Aber es gibt auch
Konstellationen, in denen wir automatisiert Daten zu einer Tabelle hinzufiigen oder diese

DATEN BEARBEITEN: EXECUTE VS. RECORDSET IN DAO

andern wollen. Manchmal legen wir vollstandige Hierarchien inklusive der Daten in ver-
kniipften Tabellen. Oder wir &ndern auch nur den Wert eines einzelnen Feldes in einem
Datensatz. Dazu kénnen wir verschiedene Techniken nutzen, die wir in diesem Beitrag
einmal vorstellen und vergleichen wollen. Dabei konzentrieren wir uns auf das Hinzu-
fugen oder Bearbeiten von einzelnen Datensatzen und schauen uns zwei verschiedene
Ansétze an: Das Anlegen oder Aktualisieren von Daten mit INSERT INTO oder UPDATE-
Abfragen, die wir per VBA zusammenstellen und dann mit der Execute-Methode ausfiih-
ren oder das Anlegen mit der Recordset-Methode AddNew/Update und das Bearbeiten

mit der Edit-Methode.

DAO oder ADODB?

Mit den eingangs erwéhnten beiden Madglichkeiten der
Anlage und Anderung von Daten mit Execute beziehungs-
weise AddNew/Edit und Update decken wir die Optionen
ab, die uns die DAO-Bibliothek bietet. Wir kdnnten dies
auch noch mit den Methoden der ADODB-Bibliothek
erledigen.

Wie wir diese Aufgaben mit ADODB erledigen, beschreiben
wir in einem weiteren Beitrag namens Daten bearbeiten:
Execute vs. Recordset in ADODB (www.access-im-
unternehmen.de/1582).

Unterschied Execute vs. AddNew/Update

Mit der Execute-Anweisung, der wir eine INSERT INTO-
SQL-Anweisung (ibergeben, und der Kombination aus
AddNew und Update eines Recordset-0bjekts erreichen
wir grundsatzlich das Gleiche: Wir fligen einer Tabelle

einen Datensatz hinzu, der die gewiinschten Werte enthalt.

Das gilt auch fiir das Andern von Datensatzen. Wir kénnen
dies mit einer UPDATE-SQL-Abfrage erledigen, die wir
uiber die Execute-Methode absetzen, oder wir verwenden

die Edit-Methode, filhren dann die Anderungen an den
gewiinschten Feldern durch und speichern diese mit der
Update-Methode in der Tabelle.

Mit beiden Methoden kénnen wir bei der Neuanlage eines
Datensatzes anschlieBend die ID des Primarschliisselwer-
tes auslesen, sofern flir dieses Feld die Autowert-Funk-
tion aktiviert ist.

Die weiteren Unterschiede, die wir in den folgenden
Abschnitten besprechen werden, beziehen sich auf den
Komfort, der sich beim Zusammenstellen der jeweiligen
Codezeilen ergibt.

Wenn wir die Execute-Methode verwenden wollen,
missen wir uns grundlegend mit der Schreibweise von
SQL-Anweisungen auskennen, zumindest fiir die SQL-Ab-
fragen INSERT INTO und UPDATE.

AuBerdem sind hier im Gegensatz zur Verwendung von
AddNew/Edit und Update noch einige Besonderheiten
bei der Angabe der einzufiigenden oder zu dndernden

Feldwerte relevant: Wenn wir beispielsweise Textfelder

Seite 34 www.access-im-unternehmen.de/1580

DATENZUGRIFF PROGRAMMIEREN

DATEN BEARBEITEN: EXECUTE VS. RECORDSET IN DAO

ACCESS

fiillen wollen, miissen wir diese in Hochkomma-

EH tblKunden

[} X

ta einfassen, bei Datumsfeldern miissen wir ein 7

Feldname Felddatentyp Beschreibung (optional) &

KundelD AutoWert
SQL-kompatibles Datumsformat verwenden und Vorname Kurzer Text
. . . i . X Nachname Kurzer Text
bei Zahlen mit Dezimaltrennzeichen mussen wir Geburtsdatum Datum/Uhrzeit
sicherstellen, dass das vom SQL Server verwen- Aktiv Ja/Nein
i .) Jahresumsatz Wahrung
dete Dezimaltrennzeichen verwendet wird.
v
.“ . . " Feldeigenschaften
AuBerdem mussen wir auch die Werte fiir Ja/ A e
. . emein achschlagen
Nein-Felder entsprechend formatieren. Feldarage Long Integer
Meue Werte Inkrement
Format
. - . BZ;Thariftung
Die Methoden AddNew/Edit plus Update sind Indiziert Ja (Ohne Duplikate)

hier wesentlich einfacher in der Handhabung.
Wir konnen alle Werte einfach (ibergeben, so wie
wir auch in VBA damit arbeiten.

Beispieltabelle

Textausrichtung

Standard Ein Feldname kann bis zu &4 Zeichen lang
sein, einschlieflich Leerzeichen. Driicken Sie

F1, um Hilfe zu Feldnamen zu erhalten.

Als Beispiel verwenden wir die Tabelle thlKun-
den aus Bild 1.

Diese enthalt alle relevanten Datentypen, die wir fiir die
unterschiedlichen Schreibweisen in INSERT INTO- und
UPDATE-Abfragen bendtigen: Kurzer Text, Datum, Ja/
Nein und Wahrung (stellvertretend fiir alle Felddatentypen
mit Nachkommastellen).

Einfiigen von Datensatzen per AddNew/Update
Wir schauen uns zuerst das Einfligen eines Datensatzes
mit der AddNew- und der Update-Methode eines Record-
sets an.

Hier deklarieren wir als Erstes zwei Variablen. Mit db
referenzieren wir das mit der GurrentDb-Funktion ermit-
telte Database-0bjekt der aktuellen Datenbank. Mit rst
holen wir uns ein Recordset-0bjekt auf Basis der Tabelle
tbiKunden.

Dazu nutzen wir die OpenRecordset-Methode des Data-
base-0bjekts:

PubTic Sub Einfuegen AddNew()
Dim db As DAO.Database

www.access-im-unternehmen.de/1580

Bild 1: Beispieltabelle tbiIKunden

Dim rst As DAQ.Recordset
Set db = CurrentDb
Set rst = db.0OpenRecordset ("tb1Kunden", dbOpenDynaset)

Danach kénnen wir direkt mit dem Einfligen eines Daten-
satzes beginnen. Dazu versetzen wir das Recordset mit
der AddNew-Methode in den Einfligemodus flir einen
neuen Datensatz:

rst.AddNew

Dann weisen wir den einzelnen Feldern der Tabelle, die
wir iiber das Ausrufezeichen angeben, die gewiinschten
Werte zu:

rst!Vorname = "André"
rst!Nachname = "Minhorst"
rst!Geburtsdatum = "23.01.1971"
rstlAktiv
rst!Jahresumsatz = 9999.99

True

Danach schlieBen wir das Anlegen des neuen Datensatzes
ab, indem wir die Update-Methode aufrufen und damit

Seite 35

ACCESS

DATENZUGRIFF PROGRAMMIEREN

DATEN BEARBEITEN: EXECUTE VS. RECORDSET IN DAO

den Datensatz in der dem Recordset zugrunde

EH tblKunden

[m] >

liegenden Tabelle speichern:

rst.Update
End Sub

Datensatz: M

KundelD -

~ Jahresumsatz -
9.999,99 €
0,00 €

Aktiv
]

- Machname - Geburtsdatt -
Minhorst 23.01.1971

Vorname
1 André
(Neu)

Tvon1 | b M b Suchen 4 G

Bild 2: Neuer Datensatz in der Tabelle thiIKunden

Damit legen wir den Datensatz aus Bild 2 in der
Tabelle an.

Wo ist das Feld KundelD?

Das Feld KundelD haben wir in der Tabelle als Auto-
wert-Feld definiert. Das heiBt, dass wir es nicht zu flillen
brauchen — es wird automatisch mit dem durch die Auto-
wert-Funktion ermittelten Wert geflllt.

Diese entspricht immer dem zuletzt hinzugefligten Wert
flir dieses Feld plus 1.

Wir konnen aber auch das Feld KundelD iibergeben, wenn
wir einmal einen anderen Wert als den durch die Auto-
wert-Funktion vorgegebenen Wert angeben wollen:

rst!KundelD = 111
Dabei sind folgende Dinge zu beachten:

e Der Wert darf noch nicht vergeben sein, sonst tritt der
Fehler 3022 auf, weil das Primarschliisselfeld jeden
Wert nur einmal enthalten darf.

¢ Der Autowert zahlt anschlieBend an dem Wert weiter,
den wir manuell zugewiesen haben. Das kann zu Pro-
blemen fiihren, wenn die Tabelle vorher beispielswei-
se Datensétze mit den ID-Werten 1 und 3 enthalten
hat und wir nun einen Datensatz mit dem ID-Wert 2
anlegen. Die Autowert-Funktion wird nun als néchs-
ten Wert 3 nutzen, was wiederum zum Fehler 3022
fihrt.

Die manuelle Vorgabe eines Wertes flr ein Autowert-Feld
sollte also mit Bedacht durchgefiihrt werden.

Schreibweisen fiir das Datum

Wir haben hier das Datum einfach als Zeichenkette tber-
geben ("23.01.1971"). Damit haben wir Potenzial flir
einen Laufzeitfehler geschaffen, denn das Datum muss
unbedingt ein giiltiges Datum sein. Wir konnten auch die
folgende Schreibweise verwenden:

rst!Geburtsdatum = #1971-01-23#

Diese wird auf Systemen mit deutschen Lokaleinstellun-
gen jedoch direkt in die folgende Zeile umgewandelt:

rst!Geburtsdatum = #1/23/1971#

Wie kdnnen aber auch die Zeichenkette "23.01.1971"
vorsichtshalber mit der GDate-Funktion in ein giiltiges
Datum umwandeln oder vorab mit IsDate priifen, ob es
sich um ein giiltiges Datum handelt.

AddNew mit Variablen

Dies konnen wir auch erledigen, indem wir die Werte flir
die einzelnen Felder zuvor in Variablen speichern und
diese dann den Feldern zuweisen. Wir starten wie zuvor:

Public Sub Einfuegen AddNew Variablen()
Dim db As DAQ.Database
Dim rst As DAO.Recordset

Dann deklarieren wir die Variablen, die wir mit den einzu-
fligenden Werten fiillen wollen, und versehen diese gleich

mit den entsprechenden Datentypen:

Dim strVorname As String

Seite 36 www.access-im-unternehmen.de/1580

DATENZUGRIFF PROGRAMMIEREN

DATEN BEARBEITEN: EXECUTE VS. RECORDSET IN DAO

Dim strNachname As String
Dim datGeburtsdatum As Date
Dim bolAktiv As Boolean

Dim curdahresumsatz As Currency

Das Database-Objekt und das Recordset-Objekt fiillen
wir wie zuvor:

Set db = CurrentDb
Set rst = db.0OpenRecordset ("th1Kunden", dbOpenDynaset)

Dann weisen wir die Werte den Variablen zu, die wir gleich
zum Einfiigen nutzen wollen:

strVorname = "Klaus"
strNachname = "Muller"
datGeburtsdatum = "01.01.2000"
bolAktiv = False
curdahresumsatz = 8888.88

SchlieBlich rufen wir AddNew auf, weisen die Werte aus
den Variablen den einzelnen Feldern zu und speichern den
Datensatz mit der Update-Methode:

rst.AddNew
rst!Vorname = strVorname
rst!Nachname = strNachname
rst!Geburtsdatum = datGeburtsdatum
rst!Aktiv = bolAktiv
rst!Jahresumsatz = curdahresumsatz
rst.Update

End Sub

Dies ist erst einmal wesentlich mehr Schreibarbeit, aber
wir bereiten damit etwas vor, was in der Praxis wesentlich
haufiger vorkommen wird als das Eintragen von fest im
Code angegebenen Werten, namlich das Ubergeben der
anzulegenden Informationen per Parameter. Damit kdnnen
wir mit einem einzigen Aufruf — unter Angabe der fiir den
neuen Datensatz einzufiigenden Werte — einen neuen
Datensatz in der gew(inschten Tabelle anlegen.

www.access-im-unternehmen.de/1580

ACCESS

AddNew mit Parametern
Dazu holen wir die Variablen einfach in die Parameterliste
der Prozedur:

Public Sub Einfuegen AddNew Parameter(_
strVorname As String, _
strNachname As String, _
datGeburtsdatum As Date,
bolAktiv As Boolean, _

curdahresumsatz As Currency)

Die folgenden Schritte sind identisch mit denen der vor-
herigen Prozedur:

Dim db As DAO.Database
Dim rst As DAO.Recordset

Set db = CurrentDb
Set rst = db.0OpenRecordset ("tb1Kunden", dbOpenDynaset)

rst.AddNew
rst!Vorname = strVorname
rst!Nachname = strNachname
rst!Geburtsdatum = datGeburtsdatum
rst!Aktiv = bolAktiv
rst!Jahresumsatz = curdahresumsatz
rst.Update

End Sub

Diese Funktion kénnen wir nun von beliebiger Stelle inner-
halb des VBA-Projekts wie folgt aufrufen und haben damit
eine Wrapper-Funktion zum Anlegen eines neuen Daten-
satzes in die Tabelle thiIKunden geschaffen:

Call Einfuegen_AddNew Parameter("Theo", "Meier",
"31.12.1999", True, 7777.77)

ID des neuen Datensatzes bei AddNew auslesen
Wenn wir wie zuvor beschrieben erst einen Kunden an-
legen und dann eine Bestellung fiir diesen hinzufligen
wollen, bendtigen wir den Wert des Feldes KundelD fiir

Seite 37

ACCESS

den neu hinzugefiigten Kunden, um die neue Bestellung
mit diesem verkniipfen zu konnen. Bei Verwendung von
AddNew/Update ist das Ermitteln allerdings recht ein-

fach.

Wir missen lediglich den Wert des Feldes KundelD ab-
fragen, bevor wir den Datensatz mit der Update-Methode
speichern.

Warum vorher? Weil durch die Update-Methode der
Datensatzzeiger nicht mehr auf dem angelegten Daten-
satz steht. Den Wert des Feldes KundelD lesen wir also
wie folgt aus:

rst!Jahresumsatz = 9999.99
Debug.Print "Neuer Kunde: " & rst!KundelD
rst.Update

Es gibt jedoch noch eine weitere Maglichkeit, die gerade
bei Verwendung von SQL Server als Backend notwendig
ist. Dabei setzen wir mit LastModified ein Bookmark auf
den Datensatz, der zuletzt gedndert wurde — in diesem
Fall den zuletzt angelegten Datensatz.

AnschlieBend konnen wir damit wieder den Wert des
Feldes KundelD fiir den neuen Datensatz auslesen:

rst.Update
rst.Bookmark = rst.LastModified
Debug.Print "Neuer Kunde: " & rst!KundelD

Einfiigen von Datensatzen mit Execute/INSERT
INTO

Wenn wir die Execute-Methode des Database-0bjekts
nutzen wollen, um beispielsweise einen neuen Datensatz
mit INSERT INTO einzufligen, benétigen wir im Unter-
schied zu AddNew/Update kein Recordset-Objeki.

DATENZUGRIFF PROGRAMMIEREN

DATEN BEARBEITEN: EXECUTE VS. RECORDSET IN DAO

Daflir miissen wir die auszufiihrende Abfrage aber direkt
vollstandig zusammenstellen, statt bequem die einzelnen
Werte den Feldern zuzuweisen. Das sieht auf den ersten
Blick unlbersichtlicher aus, aber letztlich sind die gleichen
Elemente enthalten.

Wie beginnen mit dem Definieren von Variablen flir das
Database-Objekt und fiir die zu verwendende SQL-An-
weisung:

Public Sub Einfuegen INSERTINTO()
Dim db As DAO.Database
Dim strSQL As String

Die Variable strSQL bendtigt man nicht zwangslaufig,
aber es kann hilfreich sein, wenn man zu Testzwecken die
verwendete SQL-Anweisung im Direktbereich ausgeben
mdchte. AuBerdem wird die Lesbarkeit so verbessert.

Wir fullen wieder die Variable db mit dem Wert aus Cur-
rentDb:

Set db = CurrentDb

Dann stellen wir die SQL-Anweisung in strSQL zusammen
(in einer Zeile eingeben):

strSQL = "INSERT INTO tb1Kunden(Vorname, Nachname,
Geburtsdatum, Aktiv, Jahresumsatz) VALUES('André', 'Min-
horst', #1971/01/23#, -1. 9999.99)"

INSERT INTO erwartet zundchst den Namen der Zieltabel-
le und dahinter in Klammern die Liste der Felder, die wir
fuillen mochten.

Dann folgt das VALUES-Schliisselwort mit den in Klam-
mern eingefassten Werten.

Hier sehen wir direkt die Unterschiede, die das Verwen-
den von Execute/INSERT INTO ein wenig komplizierter
machen:

Seite 38 www.access-im-unternehmen.de/1580

ACCESS

DATENZUGRIFF PROGRAMMIEREN

SQL AUSFUHREN MIT EXECUTE STATT DOCMD.RUNSQL

SQL ausfithren mit Execute statt DoCmd.RunSQL

In unseren Audits mit unseren Kunden und Lesern untersuchen wir auch regelméaBig den
VBA-Code in deren Access-Anwendungen. Dabei fallen uns immer wieder Programmier-
gewohnheiten auf, die irgendwann einmal eingefiihrt und seitdem nie wieder gedndert
wurden. Eine davon ist, SQL-Anweisungen wie INSERT INTO, UPDATE oder DELETE
mit der Methode RunSQL der DoCmd-Klasse auszufiihren. Das ist grundséatzlich nicht
falsch, solange dies zum Ziel fiihrt. Es gibt jedoch noch mindestens eine Alternative, ins-
besondere den Aufruf mit der Execute-Methode der Database-Klasse. Diese fuhrt zwar
auch nur die Ubergebene Aktionsabfrage aus, bietet aber dennoch Vorteile gegeniiber
DoCmd.RunSQL. Welche Vorteile das sind und wie wir iiberhaupt die DoCmd.RunSQL-
Methode durch die Execute-Methode ersetzen konnen, zeigen wir in diesem Beitrag.

RunSQL und Execute einsetzen

Grundsatzlich sind die beiden Methoden ahnlich und
dienen dem Aufruf von Aktionsabfragen zum Ldschen, An-
legen oder Bearbeiten von Datensétzen einer Tabelle. Als
Beispiel verwenden wir eine Tabelle namens thiKatego-
rien mit den beiden Feldern KategorielD (Priméarschliis-
selfeld) und Kategorie (Textfeld mit eindeutigem Index).

Wenn wir einen Eintrag zu einer Tabelle hinzufiigen wol-
len, erledigen wir das mit RunSQL wie folgt (in einer Zeile
im Direktbereich eingeben):

DoCmd.RunSQL "INSERT INTO tblKategorien(Kategorie) 7
VALUES('Kategorie 1')"

Bei der Execute-Methode konnen wir direkt mit Gur-
rentDb arbeiten und iibergeben die gleiche Abfrage:

CurrentDb.Execute "INSERT INTO tblKategorien(Kategorie) z
VALUES('Kategorie 1')"

Es bietet sich jedoch an, direkt eine Variable fiir das Da-
tabase-Objekt zu deklarieren. Das ist auch Voraussetzung
fir das Nutzen der weiteren Vorteile der Execute-Me-
thode:

Public Sub Beispiel Execute()
Dim db As DAO.Database
Set db = CurrentDb
db.Execute "INSERT INTO tblKategorien(Kategorie) 7
VALUES('Kategorie 2')"
End Sub

Warum wird RunSQL iiberhaupt verwendet?
Einer der Griinde, warum sich die RunSQL-Methode der
DoCmd-Klasse so groBer Beliebtheit erfreut, ist vermut-
lich in der technischen Nahe der DoCmd-Methoden zu
den Aktionen in den Access-Makros zu finden.

Access-Makros waren einer der Griinde, warum auch
Nicht-Programmierer mit Access schnell Ergebnisse
erzielen konnen: Man braucht nicht VBA zu beherrschen,
sondern kann schnell im Makro-Editor ein paar Befehle
zusammenstellen, die beispielsweise durch den Klick auf
eine Schaltfliche ausgefiihrt werden.

Die Befehle des Makro-Editors finden wir zum groBten
Teil in den Methoden der DoGmd-Klasse.

Wer also in seiner Anfangszeit im Makro-Editor die Me-
thode AusfithrenSQL genutzt hat, und dann zur Nutzung

Seite 46 www.access-im-unternehmen.de/1589

DATENZUGRIFF PROGRAMMIEREN

SQL AUSFUHREN MIT EXECUTE STATT DOCMD.RUNSQL

von VBA {ibergegangen ist,
wird logischerweise zu der
entsprechenden DoCmd-Me-
thode RunSQL gegriffen ha-
ben, um das gleiche Ergebnis
zZu erzielen.

Die Makro-Aktion Ausfiih-
renSQL ist (ibrigens mindes-
tens seit Access 2010 nicht
mehr verfligbar — wir mussten
ein altes Access 97-Buch he-

Microsoft Access

Microsoft Access kann nicht alle Datensatze anfligen, die
von der Anflgeabfrage betroffen sind,

Microsoft Access hat 0 Felder wegen
Typumwandlungsfehlern auf MULL festgelegt, und
es hat 1 Datensdtze wegen Schlisselverletzungen,
0 Datensatze wegen Sperrverletzungen und 0
Datensidtze wegen
Giiltigkeitsprifungsregelverletzungen nicht an die
Tabelle angefigt.

Machten Sie trotzdem, dass diese Aktionsabfrage
weiter ausgefihrt wird?

Klicken Sie auf 'Ja', um die Fehler zu ignarieren
und die Abfrage weiter auszufiihren,

Klicken Sie auf "Hilfe', wenn Sie Erflduterungen zu
den Ursachen der Verletzungen wiinschen,

ACCESS

Fehlerbehandlung beim
RunSQL vs. Execute

Wenn wir eine SQL-Anweisung
mit RunSQL ausfiihren, kdnnen
wir bestimmte Fehler nicht

mit einer benutzerdefinierten
Fehlerbehandlung erkennen.

Grundsétzlich werden bei Ver-
wendung von RunSQL ohne
weitere MaBnahmen alle Fehler
tiber die Benutzeroberflache

ranziehen, um sicherzugehen,
dass es diese Makro-Aktion
einmal gab.

gemeldet, zum Beispiel, wenn
wir einen Datensatz anfligen
wollen und damit einen bereits

-

Bild 1: Datenfehler beim DoCmd.RunSQL

Und da die RunSQL-Methode

nach wie vor funktioniert, gab

es flr viele Entwickler keinen Grund, sich nach einer
Alternative umzusehen.

Diese stellen wir in diesem Beitrag mit der Execute-Me-
thode der Database-Klasse vor und zeigen auch, warum
dies die bessere Variante ist. Daftir sprechen die folgen-
den Griinde:

e Wir konnen Fehler bei Verwendung von Execute (iber
eine benutzerdefinierte Fehlerbehandlung abfangen.
Bei DoCmd.RunSQL gelingt dies nicht.

e Wir konnen nach dem Ausfiihren der Execute-Me-
thode direkt ermitteln, wie viele Datensatze von der
Aktionsabfrage betroffen sind.

e Und wir kdnnen beim Hinzufligen eines Datensatzes
mit INSERT INTO direkt die ID des Autowertfeldes des
hinzugefiigten Datensatzes ermitteln.

e Wenn wir mehrere Aktionsabfragen in einer Trans-
aktion ausflihren wollen, ist dies nur mit der Execute-
Methode maglich.

vorhandenen Wert in einem
eindeutigen Feld hinzufiigen
wiirden:

Public Sub Beispiel RunSQL_Fehler()
DoCmd.RunSQL "INSERT INTO tblKategorien(Kategorie) 7
VALUES('Kategorie 1')"
End Sub

Dieser Fehler wiirde uns nur tiber die Benutzeroberflache
gemeldet werden (siehe Bild 1).

Wir konnen diesen Fehler nicht (iber eine Fehlerbehand-
lung etwa mit On Error Resume Next abfangen und auch
die Fehlernummer anschlieBend nicht mit Debug.Print
Err.Number auswerten.

Wir konnen lediglich die Anzeige der Fehlermeldung
unterbinden, indem wir zuvor die Anweisung DoGmd.
SetWarnings False einstellen und diese anschlieBend mit
DoCmd.SetWarnings True wieder aktivieren. In diesem
Fall wiirden wir den Fehler jedoch gar nicht bemerken.

Andere Fehler, wie Tippfehler in Tabellen- oder Feldnamen,
konnen wir hingegen mit einer benutzerdefinierten Fehler-
behandlung abfangen:

www.access-im-unternehmen.de/1589

Seite 47

INTERAKTIV
ORDNER UND DATEIEN IN ACCESS-TABELLEN EINLESEN

Ordner und Dateien in Access-Tabellen einlesen

Es gibt verschiedene Griinde, warum man Ordner und Dateien aus dem Filesystem in
eine entsprechende Datenstruktur einlesen sollte. Der Erste ist offensichtlich: Weil man
die Laufwerke, Ordner und Dateien oder auch nur Teile davon innerhalb der Datenbank
anzeigen mochte, beispielsweise um zu sehen, welche Dateien zu einem bestimmten
Projekt oder Kunden gehéren. Der erste Schritt auf dem Weg zu einer solchen Anzeige
ist das Einlesen der gewiinschten Struktur — unabhangig davon, ob der komplette Inhalt
einer Festplatte oder nur der Inhalt eines Unterverzeichnisses abgebildet werden soll.
Zum Einlesen von Laufwerken, Ordnern und Dateien gibt es verschiedene Méglichkei-
ten auf beiden Seiten. Auf der Seite des Dateisystems konnen wir mit der Dir-Funktion
oder alternativ mit dem FileSystemObject arbeiten, und beim Schreiben in die Tabellen
der Datenbank bietet sich unter DAO das Schreiben mit AddNew/Update oder mit der
Execute-Methode an. In diesem Artikel stellen wir die schnellsten Versionen vor, damit
das Einlesen umfangreicher Verzeichnis- und Dateistrukturen nicht unnétig lange dau-
ert.

Alles oder nur einen Teil einlesen?
Technisch haben wir alle Maglichkeiten. Wir kénnen mit

Datenmodell fiir die Erfassung von
Verzeichnissen und Dateien

den Elementen und Methoden der FileSystemObject-
Klasse auf alle Laufwerke zugreifen und uns von dort auch
durch die einzelnen Verzeichnisse arbeiten und schlieBlich
die darin enthaltenen Dateien ermitteln.

Das ist jedoch nur bedingt sinnvoll, da die Datenmengen
schnell riesig werden und wir den in unserer Datenbank
gespeicherten Bestand mdglichst synchron mit der Fest-
platte halten wollen. Das erfordert regelmaBige Aktualisie-
rungen, was jeweils Minuten oder sogar Stunden dauern
kann.

Also entscheiden wir uns bereits an dieser Stelle, immer
nur einen Teil des Dateisystems einzulesen — in diesem
Fall beginnend mit der Angabe des Verzeichnisses, dessen
Inhalte wir erfassen wollen.

Den Ausgangspunkt fiir den zu entwickelnden Algorithmus
bildet also die Auswahl des Verzeichnisses, dessen Unter-
elemente wir in unser Datenmodell tiberfiihren wollen.

Um die Struktur des Dateisystems bezliglich des von
uns gewdhlten Ordners in einer Datenbank zu speichern,
haben wir ebenfalls mehrere Moglichkeiten.

Wir konnen einfach eine Tabelle erstellen, in die wir immer
den vollstindigen Pfad der Verzeichnisse und Dateien
schreiben. Das macht es aber aufwendiger, etwa ein Tree-
View mit diesen Daten zu fiillen.

Wir miissten uns dann mit vielen Zeichenkettenoperatio-
nen durch die einzelnen Verzeichnisebenen eines Pfades
arbeiten, was sehr viel Zeit kostet. AuBerdem ist es nicht
unbedingt sehr platzsparend, wenn wir immer wieder die
gleichen iibergeordneten Verzeichnisse in einem Daten-
satz ablegen.

Also wéhlen wir die Alternative, die aus einem Satz von
drei Tabellen besteht. Hier bendtigen wir zunichst eine
Tabelle, um die Verzeichnisse zu speichern, beginnend
mit den Verzeichnissen der ersten Ebene. Die dazu be-

Seite 50 www.access-im-unternehmen.de/1583

INTERAKTIV

ORDNER UND DATEIEN IN ACCESS-TABELLEN EINLESEN

ACCESS

nétigten Felder lauten beispielsweise = thlFolders - 0o x
o Feldname Felddatentyp Beschreibung (optional) -
FolderlD und Foldername. Damit sind B FolderiD AutoWert Primarschlusselfeld der Tabelle
wir allerdings darauf beschrankt, nur Foldername Kurzer Text Name des Ordners
. " . ParentID Zahl Fremdschlisselfeld zum Gbergeordneten Ordner
Ordnemamen SpBlChem zu konnen — wir uiD Kurzer Text Eindeutige ID des Ordners im Dateisystem
miissen also noch einen Weg finden, die eegenscation =
Zuordnung der einzelnen Verzeichnisse Algeme
. . . i . gemein Machschlagen
zum jeweils iibergeordneten Verzeichnis Feldgrate Long Integer
MNeue Werte Inkrement
zu markieren. Format
Beschriftung
Indiziert : Ja ([Ohne Duplikate)
" . . Textausrichtung Standard Ein Feldname kann bis zu 64 Zeichen lang
Also fiigen wir der Tabelle noch ein Feld 55";3EinSCE!:fBI.iChFLTSFZEiChEQ' DrLr:clfI.ten Sie
namens ParentID hinzu, mit dem wir '
flir einen Ordner jeweils den Datensatz
mit dem (ibergeordneten Ordner ange- 2
ben konnen. Wir speichern also in einer
Tabelle sowohl die Ordnernamen als auch Bild 1: Tabelle zum Speichern der Ordner
die Information tiber die Hierarchie dieser
Ordner. T thlFiles - [} X
Feldname Felddatentyp Beschreibung [optional) -
. B FilelD AutoWert Primarschlisselfeld der Tabelle
Uber das Feld ParentiD erzeugen wir Filename Kurzer Text Name der Datei
. flexi Bezieh der Dat t ParentID Zahl Fremdschlisselfeld zum Ordner der Datei
eine reflexive bezienung der Uatensaize uID Kurzer Text Eindeutige ID der Datei im Dateisystem
der Tabelle auf sich selbst. SchlieBlich Filesize zahl ; GroBe df_fDEtEi
. . . . FileDateTime Datum/Uhrzeit Anlage-/Anderungsdatum der Datei
fligen wir der Tabelle, die wir thiFolder =
nennen und deren Entwurf wie in Bild 1 Felgelgensenatten
. . Allgemein
aussieht, noch ein Feld namens UID e
H Eingabeformat
hinzu. Beschritung
f;fnéij::f:ga CI‘Jie Ee:gpehsclr:reibur;;;“ist -thijna_l.dSie hir:fp
. . B . &n Feldinnalt Zu erlaren, und wird aucn in
In NTFS'Date|SyStemen (NeW TeChnOIOQy G.ulflgl-catsmeldur?g " der Statusleiste ange:eigf_. wenn Sie dieses
. Em._;a_he erforderlich I‘-Je?n Feld auf einem Formular markieren. Dricken
File System), die bereits mit Windows 3.1 Indiziert Nein Sie F1, um Hilfe zu Beschreibungen zu
IME-Modus Keine Kontrolle erhalten.
i] 0 i i - IME-Satzmod Kei
eingeflhrt wurden, konnen wir mit API e Setamodus ene
Funktionen eine emdeuhge 1D fur Ordner Datumsauswahl anzeiger| Fiir Datumsangaben
und Dateien ermitteln. Wozu wir diese

bendtigen und wie wir diese auslesen,
erlutern wir spater.

Zunéchst kiimmern wir uns aber um die Tabelle zum
Speichern der Dateiinformationen. Diese enthalt wiederum
ein Primérschliisselfeld (FilelD), ein Feld zum Speichern
des Dateinamens (Filename) sowie ein Feld, mit dem wir
die Beziehung zu dem Ordner herstellen, in dem sich die
Datei befindet, und die wir wiederum ParentID nennen.
AuBerdem fiigen wir auch hier ein Feld namens UID flir

www.access-im-unternehmen.de/1583

Bild 2: Tabelle zum Speichern der Dateien

den eindeutigen Identifizierer fiir die Datei sowie zwei Fel-
der zum Speichern der DateigroBe und des Anlage- bezie-
hungsweise letzten Anderungsdatums hinzu (siehe Bild 2).

SchlieBlich erganzen wir im Beziehungen-Fenster noch
die notwendigen Beziehungen (siehe Bild 3). Hier ziehen
wir zundchst die Tabelle thiFolder zwei Mal hinein und
erstellen eine Beziehung des Feldes ParentlD des im Be-

Seite 51

INTERAKTIV
ORDNER UND DATEIEN IN ACCESS-TABELLEN EINLESEN

ziehungen-Fenster mit thiFolders_1 benannten zweiten
Exemplars der Tabelle thiFolders zu dem mit thiFolder
benannten Exemplar. Damit realisieren wir die Beziehung
von Unterordnern zum (bergeordneten Ordner. AuBerdem
ziehen wir noch einen Beziehungspfeil vom Feld Paren-
tID der Tabelle tbiFiles zum Feld FolderID der Tabelle
thiFolders.

Einlesen der Ordner und Dateien

Die intuitive Vorgehensweise zum Einlesen der Ordner und
Dateien des gewiinschten Ordners wiirde sich nach dem
Aufbau des Dateisystems und unserer Tabellenstruktur
richten.

Wir wiirden also etwa die Klassen und Methoden der
FileSystemObject-Klasse nutzen, um ausgehend vom
Basisordner zunéchst die darin enthaltenen Ordner ein-
zulesen und in die Tabelle thlOrdner zu schreiben. Beim
Durchlaufen dieser Ordner wiirden wir in einer rekursiven
Prozedur die untergeordneten Ordner und die Dateien
dieses Ordners einlesen und so weiter.

Diese Vorgehensweise ist jedoch nicht schnell genug.
Beim Einlesen umfangreicher Ordnerstrukturen wollen wir
schlieBlich nicht ewig warten. Deshalb wahlen wir hier
einen alternativen Ansatz, der allerdings etwas komplexer
ist und wie in Listing 1 beginnt.

Was macht die Prozedur OrdnerUndDateienEinlesen
tiberhaupt?

e Wir haben einen Startordner (zum Beispiel G:\Bue-
cher).

e Darin sind Unterordner und Dateien.

¢ |n den Unterordnern sind wieder Unterordner und
Dateien. Das Ganze als Baum.

e Die Prozedur lauft durch den ganzen Baum, schreibt
alle Ordner in thiFolders, schreibt alle Dateien in thlFi-

t-; Beziehungen _ - .
.
thiFolders thlFiles
B FilelD
% FolderlD Ffle
Foldername _|_‘ Pl enatT;
ParentID Ualll:':n
uiD
Filesize
FileDateTime
L thiFelders_1
% FolderD
Foldername
ParentID
uib
v
4 & .

Bild 3: Beziehungen zwischen den Tabellen

les, merkt sich zu jeder Datei und jedem Ordner, wo
sie liegen (ParentlD), und speichert auBerdem eine UID
(damit wir sie spéter wiedererkennen) und GroBe und
Datum (fiir Dateien).

Danach konnen wir mit diesen Tabellen bequem arbeiten,
zum Beispiel zum Fillen eines TreeView-Steuerelements.

Die Prozedur OrdnerUndDateienEinlesen Schritt
fiir Schritt erklart

Die Prozedur bekommt mit dem Parameter strRoot einen
Startpfad. Als Erstes deklarieren wir die Variablen:

e wrk und db: Verweise auf die aktuelle Datenbank und
das Workspace-0bjekt

o rstFolders und rstFiles: Recordsets fiir thiFolders und
thiFiles

e colTodo: Eine Collection als To-do-Liste mit Ordnern,
die noch abgearbeitet werden miissen

e strPfad, strEintrag und strVollPfad: String-Variablen
fiir aktuelle Pfade/Namen

Seite 52

www.access-im-unternehmen.de/1583

INTERAKTIV
ORDNER UND DATEIEN IN ACCESS-TABELLEN EINLESEN

Public Sub OrdnerUndDateienEinlesen(ByVal strRoot As String)
Dim wrk As DAO.Workspace
Dim db As DAO.Database
Dim rstFolders As DAO.Recordset
Dim rstFiles As DAO.Recordset
Dim colTodo As Collection
Dim strPfad As String
Dim strEintrag As String
Dim strVollPfad As String
Dim IngAttr As Long
Dim IngCounter As Long
Dim strUID As String
Dim TngParentID As Long
Dim IngCurrentFolderID As Long
Dim IngTimer As Long
Dim bolIsRoot As Boolean

IngTimer = Timer

If Right$(strRoot, 1) = "\" Then
strRoot = Left$(strRoot, Len(strRoot) - 1)
End If

Set wrk = DBEngine(0)
Set db = wrk.Databases(0)

Call TabellenZuruecksetzen(db)

Set rstFolders = db.0OpenRecordset("tblFolders", dbOpenDynaset)
Set rstFiles = db.OpenRecordset("tb1Files", dbOpenDynaset)
Set colTodo = New Collection

Call TodoAdd(colTodo, strRoot, 0)
polIsRoot = True

DoCmd.Echo False

DoCmd.Hourglass True

wrk .BeginTrans

On Error GoTo Fehler

Listing 1: Die Prozedur OrdnerstrukturEinlesen (Teil 1)

e |ngAttr: Dateiattribut (ist es ein Ordner oder eine e strUID: Datei-/Ordner-ID, die wir mit der Funktion
Datei?) GetFilelD holen

¢ IngCounter: Wie viele Dateien haben wir schon ge- e IngParentID und IngCurrentFolderID: Verweise auf
funden? tibergeordnete Ordner

www.access-im-unternehmen.de/1583 Seite 53

INTERAKTIV
ORDNER UND DATEIEN IN ACCESS-TABELLEN EINLESEN

e IngTimer:; Erfassung der Laufzeit
¢ hollsRoot: Gibt an, ob wir noch im Root-Ordner sind

Zu Beginn speichern wir den aktuellen Timer-Wert in
IngTimer, um spater die Gesamtzeit fiir den Vorgang
ausgeben zu konnen. AuBerdem schneiden wir vom Root-
Ordner in strRoot noch ein eventuell am Ende befindliches
Backslash-Zeichen ab, falls dieses noch vorhanden ist.

Workspace und Transaktion fiir schnelleres
Schreiben

Danach initialisieren wir die Workspace-Variable wrk
und die Database-Variable db. Das Workspace-0bjekt
bendtigen wir, weil wir damit die vielen Anlegevorgénge
in einer Transaktion bindeln konnen, was wesentlich
schneller funktioniert, als wenn wir jeden Vorgang einzeln
durchfiihren.

Tabellen zuriicksetzen und leeren

Danach rufen wir die Prozedur TabellenZuruecksetzen
auf. Diese loscht nicht nur einfach die Daten, sondern

fligt zuvor einen neuen Datensatz in die beiden Tabellen
tbiFolders und thliFiles ein, der im Primarschllsselfeld
den Wert 0 enthalt. Damit setzen wir den Autowert der
beiden Tabellen zuriick, sodass beim Neuanlegen von
Datensatzen nachfolgend wieder mit dem Wert 1 gestartet
wird. AnschlieBend loschen wir alle Datenséatze aus diesen
beiden Tabellen:

Public Sub TabellenZuruecksetzen(db As DAO.Database)
db.Execute _
"INSERT INTO tb1Files(FileID, Filename) " _
& "VALUES(0, "")". dbFailOnError
db.Execute _
"INSERT INTO tblFolders(FolderID, Foldername) " _
& "VALUES(0, '")", dbFailOnError

db.Execute "DELETE FROM tbl1Files", dbFailOnError
db.Execute "DELETE FROM tblFolders", dbFailOnError
End Sub

Weitere Initialisierungen

Danach offnen wir zwei Recordsets: rstFolders fiir die
Ordner und rstFiles fiir die Dateien. AuBerdem legen wir
ein Collection-0bjekt namens colToDo an, mit dem wir
noch zu bearbeitende Ordner speichern.

Hier legen wir als Erstes den Startordner aus dem Para-
meter strRoot mit dem Wert 0 ab. Das geschieht in einer
weiteren Hilfsprozedur namens TodoAdd.

Dieser iibergeben wir das Gollection-0bjekt, den Pfad
und die ID des tibergeordneten Ordners als Parameter.

Wir fligen der Collection dann einen Eintrag hinzu, der aus
der ID des iibergeordneten Ordners, dem Pipe-Zeichen (1)
und dem Pfad besteht. Im ersten Aufruf tragen wir also
den Wert OI[Pfad] ein:

Private Sub TodoAdd(ByRef col As Collection, _
ByVal strPfad As String, ByVal IngParentID As Long)
col.Add CStr(IngParentID) & "|" & strPfad
End Sub

Der Wert 0 bedeutet in diesem Fall, dass es keinen tber-
geordneten Ordner gibt.

Da dieser erste Ordner eine Spezialbehandlung erfahren
soll, stellen wir auBerdem die Variable bollsRoot auf True
ein.

SchlieBlich deaktivieren wir die Bildschirmaktualisierung
mit DoCmd.Echo False und aktivieren die Sanduhr mit
DoCmd.Hourglass True.

Starten der Transaktion und der Do While-
Schleife

Nun starten wir die Transaktion und integrieren die Fehler-
behandlung (siehe Listing 2).

AnschlieBend starten wir eine Do While-Schleife, in der
wir alle Elemente der Collection colToDo durchlaufen. Die

Seite 54 www.access-im-unternehmen.de/1583

INTERAKTIV
ORDNER UND DATEIEN IN ACCESS-TABELLEN EINLESEN

Do While colTodo.Count > 0
Call TodoPop(colTodo, strPfad, IngParentID)
If Right$(strPfad, 1) <> "\" Then
strPfad = strPfad & "\"
End If
If Not bolIsRoot Then
rstFolders.AddNew
rstFolders!FolderName = GetFolderNameFromPath(strPfad)
If TngParentID > 0 Then
rstFolders!ParentID = TngParentID
Else
rstFolders!ParentID
End If
rstFolders!UID = GetFileID(strPfad)
IngCurrentFolderID = rstFolders!FolderID

Null

rstFolders.Update
Else
IngCurrentFolderID = 0
polIsRoot = False
End If
strEintrag = Dir$(strPfad & "*", vbDirectory)
Do While strEintrag < ""
If strEintrag < "." And strEintrag <> ".." Then
strVollPfad = strPfad & strEintrag
strUID = GetFilelID(strVollPfad)
If Len(strUID) > 0 Then
TngAttr = GetAttr(strVollPfad)
If (TngAttr And vbDirectory) = vbDirectory Then
Call TodoAdd(colTodo, strVollPfad, TngCurrentFolderID)
Else
rstFiles.AddNew
rstFiles!FileName = strEintrag
rstFiles!ParentID = TngCurrentFolderID
rstFiles!UID = strUID
rstFiles!Filesize = FileLen(strVollPfad)
rstFiles!FileDateTime = FileDateTime(strVollPfad)
rstFiles.Update
IngCounter = TngCounter + 1

End If
End If
End If
strEintrag = Dir$()

Loop

Listing 2: Die Prozedur OrdnerstrukturEinlesen (Teil 2)

www.access-im-unternehmen.de/1583 Seite 55

INTERAKTIV
DATEIEN SCHNELL IM TREEVIEW-STEUERELEMENT ANZEIGEN

Dateien schnell im TreeView-Steuerelement anzeigen

Im Artikel »Ordner und Dateien in Access-Tabellen einlesen« (www.access-im-unter-
nehmen.de/1583) haben wir gezeigt, wie wir den Inhalt kompletter Ordner samt Unter-
ordnern und Dateien in Tabellen speichern. Doch was helfen die dort liegenden Daten,

wenn wir sie nicht in einem Access-Formular anzeigen konnen? Wie das gelingt, zei-
gen wir im vorliegenden Artikel. Als Steuerelement fiir die Anzeige hierarchischer Daten
ist das TreeView-Steuerelement pradestiniert. Wir méchten alle Elemente der Tabellen
aus dem oben genannten Artikel in einem solchen Steuerelement anzeigen und weitere
Funktionen hinzufiigen: die Anzeige des jeweiligen Ordners direkt im Windows Explorer,
das Offnen der aktuell markierten Datei oder auch das Ausschneiden, Kopieren und
Einfligen, das wir nicht nur auf die Elemente des TreeView-Steuerelements anwenden,
sondern auch auf die Originaldateien. Auch das Umbenennen von Ordnern und Dateien
soll moéglich sein — und schlieBlich wollen wir auch noch deren Speicherort durch Drag
and Drop anpassen kénnen. In diesem Artikel erfahren Sie, wie Sie das TreeView schnell
mit Ordnern und Dateien fiillen k6nnen.

FormUIar mit TreeVIew- Zgl frmDateienlmTreeview — a e
Steuerelement erstellen
. o I I I I I I A I S U - IR AN AN RN IRV IS SRRV IR IR A | BRSNS - RN IR < AN IR O
Zunachst legen wir ein neues For- D e
mular namens frmDateienimTree- ; @ fad:| |Basispfad
view in der Entwurfsansicht an. 1
Z w} Neu einlesen

. " . . 2

Diesem fiigen wir gleich das - || |Fample Node
. . . i Gample Node
TreeView-Steuerelement hinzu, 3| e Sample Mode
mit dem wir die Dateien anzeigen 4 Sample Nade
wollen, und nennen es ctiTree- :
View. 8
. :

Das TreeView-Steuerelement soll -
flir seine Eintrdge Icons anzeigen, ?
daher fligen wir noch ein Image- ;
List-Steuerelement namens -
ctlimagelList hinzu. Oben fiigen :
wir weitere Steuerelemente ein: 0

* ein Textfeld namens txtBasis- " v

pfad zur Anzeige des aktuellen exrk] |]
Hauptverzeichnisses, Bild 1: Grundaufbau des Formulars

Seite 64 www.access-im-unternehmen.de/1584

INTERAKTIV

DATEIEN SCHNELL IM TREEVIEW-STEUERELEMENT ANZEIGEN

ACCESS

e gine Schaltfliche namens = tblOptionen

Feldname

cmdOrdnerAuswaehlen
zum Auswéhlen des Haupt-
verzeichnisses, dessen
Unterordner und Dateien
angezeigt werden sollen,

Basispfad
MarkiertesElement

Allgemein Nachschlagen

Beschriftung
Standardwert Mein
Galtigkeitsregel
Galtigkeitsmeldung

Indiziert Mein
Textausrichtung

e ¢in Kontrollkastchen
namens chkDateienlm-
TreeViewAnzeigen, um
festzulegen, ob die Dateien
im TreeView-Steuerelement
ein- oder ausgeblendet
werden sollen, und

DateieninTreeViewAnzeigen

Format Ja/Mein

Standard

- O X
Felddatentyp Beschreibung (optional) -
Kurzer Text Pfad, der angezeigt werden soll '
Kurzer Text Speichern des markierten Elements
Ja/Nein Angabe, ob Dateien angezeigt werden sollen

Feldeigenschaften

Die Feldbeschreibung ist optional. Sie hilft,
den Feldinhalt zu erkldren, und wird auch in
der Statusleiste angezeigt, wenn Sie dieses
Feld auf einem Formular markieren. Dricken
Sie F1, um Hilfe zu Beschreibungen zu
erhalten.

Bild 2: Entwurf der Optionen-Tabelle

e eine weitere Schaltflache
namens cmdNeuEinlesen, mit der wir das TreeView-
Steuerelement erneut fiillen kdnnen.

Der Entwurf sieht nun zunachst wie in Bild 1 aus.

Optionentabelle anlegen

Die Einstellungen der beiden Steuerelemente txtBa-
sispfad und chkDateienImTreeViewAnzeigen wollen
wir speichern und jeweils beim néchsten Offnen des
Formulars wiederherstellen. Dazu bendtigen wir eine
Tabelle namens thlOptionen, deren Entwurf wie in Bild 2
aussieht.

Das Formular binden wir (iber die Eigenschaft Datensatz-
quelle an die Tabelle thlOptionen, die beiden Steuer-
elemente txtBasispfad und chkDateienimTreeView-
Anzeigen (iber die Eigenschaft Steuerelementinhalt an
die jeweiligen Felder der Optionentabelle.

Basispfad auswahlen

Damit wir den Ordner auswahlen kdnnen, dessen
Unterordner und Dateien im TreeView-Steuerelement
angezeigt werden sollen, hinterlegen wir fiir die Schalt-
flache cmdOrdnerAuswaehlen die folgende Ereignis-
prozedur:

www.access-im-unternehmen.de/1584

Private Sub cmdOrdnerAuswaehlen Click()
Me.txtBasispfad = ChooseFolder
Me.Dirty = False

End Sub

Diese zeigt Uber die Funktion ChooseFolder einen Ord-
nerauswahl-Dialog an;

PubTic Function ChooseFolder()
Dim objFileDialog As Office.FileDialog
Dim strTemp As String

Set objFileDialog = _
Application.FileDialog(msoFileDialogFolderPicker)

With objFileDialog
.Title = "Datei auswdhlen"
.ButtonName = "Auswdhlen"
.InitialFilename = CurrentProject.Path & "\"
If .Show = True Then
strTemp = .SelectedItems(1)
End If
End With
ChooseFolder = strTemp

End Function

Seite 65

INTERAKTIV
DATEIEN SCHNELL IM TREEVIEW-STEUERELEMENT ANZEIGEN

Private Sub Form Load()

DoCmd.Hourglass True

Set objImagelList = Me.ctlImagelList.Object

objImagelist.ImageHeight = 16
objImagelist.ImageWidth = 16

Call ImagelListFuellen

Set objTreeview = Me.ct1TreeView.Object
With objTreeview
Set .ImagelList = objImagelList
.Nodes.Clear
.Appearance = ccFlat
.BorderStyle = ccNone
.HideSelection = False
.LineStyle = tvwRootLines
.Indentation = 250
.Font.name = "Calibri"
.Font.Size = 10
.OLEDragMode = ccOLEDragAutomatic
.OLEDropMode = ccOLEDropManuall
End With

Call FillTreeView(Me.chkDateienInTreeviewAnzeigen)
Call SelectCurrentNode

DoCmd.Hourglass False
End Sub

Listing 1: Diese Prozedur wird beim Laden des Formulars ausgefiihrt.

Um die hier verwendete Klasse FileDialog zu nutzen, ImTreeView die folgenden Deklarationsanweisungen
miissen wir noch einen Verweis auf die Bibliothek Micro- hinzu:
soft Office 16.0 Object Library hinzufligen.
Dim objTreeview As MSComct1Lib.TreeView
Nach der Auswahl werden die Daten des Formulars mit Dim objImagelist As MSComctlLib.Imagelist
Me.Dirty = False gespeichert. Dim dicFolders As Scripting.Dictionary
Dim dicFiles As Scripting.Dictionary
Filllen des TreeView-Steuerelements

Bevor wir uns die Prozeduren ansehen, mit denen wir Die ersten beiden benétigen wir, um die Steuerelemente
die Ordner und Dateien aus den Tabellen tbhlFolders und ctiTreeView und ctlimageList zu referenzieren, die beiden
tbiFiles in das TreeView-Steuerelement laden, fligen wir tibrigen als temporaren Speicher fiir die anzuzeigenden
im Kopf des Klassenmoduls des Formulars frmDateien- Ordner und Dateien. Um diese Dictionary-Elemente nutzen

Seite 66 www.access-im-unternehmen.de/1584

INTERAKTIV

DATEIEN SCHNELL IM TREEVIEW-STEUERELEMENT ANZEIGEN

zu koénnen, bendtigen wir einen weiteren Verweis, dieses
Mal auf die Bibliothek Microsoft Scripting Runtime.

Die Ereignisprozedur Beim Laden

In der Prozedur, die durch das Ereignis Beim Laden des
Formulars ausgeldst wird (siehe Listing 1), aktivieren wir
zunachst die Sanduhr (die wir am Ende wieder deaktivie-
ren) und weisen der Variablen objlmageList die Eigen-
schaft Object des Steuerelements ctllmagelList zu. Damit
konnen wir per IntelliSense auf die spezifischen Eigen-
schaften dieses Steuerelements zugreifen.

Dann stellen wir seine Eigenschaften ImageHeight und
ImageWidth jeweils auf 16 Pixel ein, um die GroBe der

ACCESS

anzuzeigenden Icons festzulegen. SchlieBlich rufen wir die
Prozedur ImageListFuellen auf (siehe Listing 2). Diese
geht davon aus, dass wir die Icons, die wir im TreeView-
Steuerelement anzeigen wollen, in der Systemtabelle
MSysResources gespeichert haben.

Das haben wir bereits erledigt (siehe Bild 3). Die Prozedur
ImagelListFuellen 6ffnet ein Recordset basierend auf der
Tabelle MSysResources, gefiltert nach den Elementen
des Typs png.

Dann referenziert sie das ImagelList-Steuerelement mit
der bereits im Modulkopf deklarierten Variablen obj-
ImageList. AnschlieBend wird die Eigenschaft ImageList

Private Sub ImageListFuellen()
Dim db As DAQ.Database
Dim rst As DAQ.Recordset
Dim objImagelList As MSComctlLib.ImageList

Set db = CurrentDb

Set objImagelList = Me.ctlImagelList.Object

Set ctlTreeView.Object.ImagelList = Nothing

objImagelList.ListImages.Clear

Do While Not rst.EOF

rst.MoveNext
Loop

Dim objListImage As MSComct1Lib.ListImage

For Each objListImage In objImagelList.ListImages
Debug.Print objListImage.Index, objListImage.Key

Next objListImage

rst.Close

Set rst = Nothing

Set db = Nothing
End Sub

Set rst = db.0OpenRecordset ("SELECT * FROM MSysResources WHERE Extension = 'PNG'", dbOpenSnapshot)

Call amvAddIconToImagelistFromResourcesByName(objImagelList, rst!name)

Listing 2: Fiillen des ImageList-Steuerelements mit den Bildern aus MSysResources

www.access-im-unternehmen.de/1584

Seite 67

INTERAKTIV
DATEIEN SCHNELL IM TREEVIEW-STEUERELEMENT ANZEIGEN

des Steuerelements ctiTreeView geleert — die-

ses wird spater erneut zugewiesen.

Dann leert die Prozedur das ImageList-Steu-
erelement mit der Clear-Methode der List-
Images-Auflistung. Dann ruft die Prozedur eine
weitere Prozedur namens amvAddiconTo- o
ImageListFromResourcesByName auf.

0] Extension - Id - Mame - Type -
@[1} thmx 1 Office Theme thmx
1) png 3 book img
i) png 4 folder img
d) png 5 new img
i) png 6 delete img
d() png 7 refresh img
o) (Neu)

1voné | b M b Suchen 4 o >

Datensatz: M

Diese wollen wir hier nicht im Detail beschrei-
ben — sie 1adt das Element mit dem Namen aus
rst!Name fiir den aktuellen Datensatz des Re-
cordsets und fligt es zum ImageList-Steuerele-
ment hinzu (siehe Modul MDL_AMV_Pictures). Auf diese
Weise landen alle .png-Dateien aus der Tabelle MSysRe-
sources im ImageList-Steuerelement und kénnen so im
TreeView-Steuerelement verwendet werden.

Um dies nicht im ImageList-Steuerelement priifen zu
missen, gibt die Prozedur den Index und die Namen aller
Elemente einmal im Direktbereich des VBA-Editors aus —
diesen Bereich kdnnen wir im produktiven Einsatz spater
entfernen. Das Ergebnis sieht in diesem Fall wie folgt aus:

book
folder
new
delete

o~ W N

refresh

Danach schlieBt und leert die Prozedur alle Objektvariab-
len.

Zuriick in der Prozedur Form_Load referenzieren wir nun
das TreeView-Steuerelement aus Me.ctiTreeView.Object
mit der Variablen objTreeView und stellen einige Eigen-
schaften ein. Als Erstes weisen wir diesem fiir die Eigen-
schaft ImageList den Inhalt von objlmageList zu. So
weiB das TreeView-Steuerelement, woher es seine Icons
beziehen soll, die wir nachher den Elementen zuweisen.

Bild 3: Icons fiir das TreeView-Steuerelement in der Tabelle MSysResources

Dann leert die Prozedur alle gegebenenfalls noch vorhan-
denen Elemente. SchlieBlich folgt die Einstellung weiterer
Eigenschaften, die fiir das Aussehen des TreeView-Steu-

erelements verantwortlich sind:

e Appearance erhélt den Wert ccFlat, damit es nicht mit
3d-Effekt angezeigt wird,

e mit BorderStyle (Wert: ccNone) blenden wir den Rah-
men des Steuerelements aus (wir filgen diesen ber
die Eigenschaften des Steuerelements selbst (iber das
Eigenschaftenblatt wieder hinzu),

e mit HideSelection (False) legen wir fest, dass das
aktivierte Element auch beim Fokusverlust zumindest
grau hinterlegt wird,

e mit LineStyle (tvwRootLines) legen wir die Art der Ver-
bindungslinien zwischen den Elementen fest,

¢ Indentation stellen wir auf 250 ein, damit die Elemente
nicht so weit eingeriickt werden wie im Standard,

¢ mit Font.Name und Font.Size stellen wir Schriftart und
-groBe fest und

e mit OLEDragMode (ccOLEDragAutomatic) und OLE-
DropMode (ccOLEDropManual) legen wir fest, dass

Seite 68 www.access-im-unternehmen.de/1584

