
ORDNER UND DATEIEN
VERWALTEN

4

ACCESS

SEITE 2

WARUM REFERENZIELLE
INTEGRITÄT IN ACCESS?
Lesen Sie, wie Sie mit Beziehun-
gen mit referenzieller Integrität
Inkonsistenzen und Fehleingaben
verhindern.

SYNCHRONE CHECKBOXEN
IN HAUPT- UND UNTER-
FORMULAR
Entdecken Sie einen spannenden
Anwendungsfall für Checkboxen
in Formularen.

SQL-ABFRAGEN MIT
EXECUTE STATT RUNSQL
Lernen Sie die beiden Methoden
kennen und erfahren Sie, warum
»Execute« mehr Möglichkeiten
bietet.

Ausgabe 01/2026

IM UNTERNEHMEN

Lesen Sie Ordner und
Dateien in Access ein und
zeigen Sie diese in einem
TreeView-Steuerelement an
(ab Seite 50).

SEITE 25 SEITE 46

In diesem Heft:

www.access-im-unternehmen.de

OR
DN

ER
 U

ND
 D

AT
EI

EN
 V

ER
W

AL
TE

N
· R

EF
ER

EN
ZI

EL
LE

 IN
TE

GR
IT

ÄT
 IN

 A
CC

ES
S

· S
YN

CH
RO

NE
 C

HE
CK

BO
XE

N
· E

XE
CU

TE
 S

TA
TT

 R
UN

SQ
L

AU
SG

AB
E

01
/2

02
6

Mat-Nr. 01583-5153

InteraktIv
Dateien schnell im treeView-steuerelement anzeigen

www.access-im-unternehmen.de/1584Seite 74

ACCESS
IM UNTERNEHMEN

Dann weisen wir der Collection-Variablen col die darin
gespeicherte Collection zu. Auch diese enthält für jede
Datei ein Array, das wir mit varItem referenzieren und aus
dem wir über den Index die Werte für die Variablen lngID
und strname der aktuellen Datei auslesen. Danach folgt
wieder die If...then-Bedingung, die prüft, ob objParent­
node den Wert nothing enthält, also ob es sich um ein
Element der ersten Ebene handelt oder um ein unterge-
ordnetes Element.

Im Falle eines Elements der ersten Ebene werden die
Einträge für die Dateien direkt unterhalb der Ordner der
ersten Ebene angelegt – wieder mit der add-Methode der
nodes-Auflistung. Hier verwenden wir allerdings einen
Key, der aus dem Buchstaben i und der ID der Datei be-
steht. Da wir das f bereits für die Folder-Elemente genutzt
haben und Files auch mit f beginnt, haben wir hier ein-
fach den zweiten Buchstaben genutzt, also i.

Der else-Zweig wird angesteuert, wenn mit objParent­
node bereits ein übergeordnetes Element übergeben
wurde, die Datei sich also in einem Ordner befindet und
nicht in der ersten Ebene.

Hier geben wir mit den ersten Parametern
der add-Methode wieder an, unter welchem
Folder-Element das neue File-Element angelegt
werden soll. Auf diese Weise durchlaufen wir alle
Elemente der beiden Dictionaries und füllen das
treeview-Steuerelement wie in Bild 5.

Die Schaltfläche »neu einlesen«
Es fehlt noch die Schaltfläche cmdneueinlesen,
mit der wir nach der Auswahl eines anderen
Ordners im Textfeld txtBasisordner das erneute
Einlesen der Daten aus den Tabellen initialisieren
wollen. Diese Schaltfläche löst die folgende
Ereignisprozedur aus:

Private Sub cmdNeuEinlesen_Click()

 Dim db As DAO.Database

 Set db = CurrentDb

 db.Execute "DELETE FROM tblFiles", dbFailOnError

 db.Execute "DELETE FROM tblFolders", dbFailOnError

 Call OrdnerUndDateienEinlesen(Me.txtBasispfad)

 Call Form_Load

End Sub

Sie löscht alle Daten aus den beiden Tabellen, liest diese
mit der Prozedur OrdnerUndDateieneinlesen erneut ein
und ruft die Prozedur Form_Load auf, damit das TreeView
erneut gefüllt wird – dieses Mal mit den neu eingelesenen
Daten.

Zusammenfassung und ausblick
In diesem Beitrag zeigen wir, wie die Daten aus den bei-
den Tabellen tblFolders und tblFiles in einem TreeView-
Steuerelement angezeigt werden können.

In einem weiteren Beitrag namens Mit Ordnern und
Dateien im treeview arbeiten (www.access­im­unter­
nehmen.de/1585) liefern wir die Funktionen, mit denen
wir im TreeView mit diesen Dateien arbeiten können.

Bild 5: Das gefüllte treeview-Steuerelement

u1_u4_aiu_2026_01.indd 1u1_u4_aiu_2026_01.indd 1 10.01.2026 12:30:0610.01.2026 12:30:06

EDITORIAL

www.access-im-unternehmen.de Seite 1

ACCESS
IM UNTERNEHMEN

Eines vorneweg: Die Lösungen eignen sich nicht, um die
Festplatte vollständig einzulesen, sondern sind eher für
Unterordner mit einigen Ordnern und Dateien geeignet,
da wir nicht um das Einlesen der einzelnen Elemente
herumkommen. Der große Nutzen entsteht dadurch, dass
die Dateien eine eindeutige File-ID aufweisen, die wir
ebenfalls speichern und durch die wir den Dateien über
Tabellen Metadaten hinzufügen können. Zu Beginn steht
das Einlesen der Elemente, was wir ausführlich im Beitrag
Ordner und Dateien in Access-Tabellen einlesen ab
Seite 50 beschreiben.

Die Ordner und Dateien möchten wir übersichtlich darstel-
len, was sich am besten im TreeView-Steuerelement erle-
digen lässt. Hier können wir die Elemente in der gleichen
Hierarchie abbilden, wie es auch im Windows Explorer
der Fall ist – und wir haben sogar zusätzliche Möglich-
keiten, da wir alle Elemente gleichzeitig im Baum abbilden
können. Im Beitrag Dateien schnell im TreeView-Steu-
erelement anzeigen stellen wir ab Seite 64 eine perfor-
mance-optimierte Version zum Füllen des TreeViews mit
den Ordnern und Dateien vor.

Ein grundlegendes Problem vieler Access-Anwendungen
ist die mangelhafte Definition von Beziehungen mit refe-
renzieller Integrität, was in der Folge zu Inkonsistenzen
und weiteren Problemen führen kann. Warum Beziehun-
gen so wichtig sind, beschreiben wir im Beitrag Warum
Beziehungen mit referenzieller Integrität? ab Seite 2.

Ein weiteres Problem entsteht, wenn man Daten wie
die Kategorie eines Produkts mit einer 1:n-Beziehung
verknüpft, wodurch sich genau eine Kategorie je Pro-
dukt auswählen lässt. Stellt man später fest, dass doch
mehrere Kategorien je Produkt ausgewählt werden sollen,
muss man das Datenmodell umbauen. Wie das gelingt,
beschreiben wir im Beitrag Reflexive 1:n-Beziehung zu
m:n-Beziehung ab Seite 10.

Wenn zu einem Auftrag mehrere Teilaufträge gehören,
möchte man die Erledigung für beide Elemente anzeigen
können. Das sollte synchron geschehen, sodass beim
Markieren des Auftrags als »Erledigt« automatisch die
Teilaufträge markiert werden und umgekehrt. Wie das ge-
lingt, beschreiben wir unter dem Titel Erledigt-Status in
Haupt- und Unterformular synchron ab Seite 25.

Schließlich gehen wir in den beiden Beiträgen Daten
bearbeiten: Execute vs. Recordset in DAO (ab Seite 34)
und SQL ausführen mit Execute statt DoCmd.RunSQL
(ab Seite 46) noch auf verschiedene Techniken rund um
das VBA-gesteuerte Ausführen von Abfragen zum Einfü-
gen, Bearbeiten oder Löschen von Daten ein.

Viel Spaß beim Lesen wünscht Ihnen

Ihr André Minhorst

Ordner und Dateien mit Access verwalten
Auf einer Festplatte häuft sich mit der Zeit Einiges an. Der Windows
Explorer oder Alternativen bieten meist ausreichende Funktionen, um der
Datenmenge Herr zu werden. Aber manchmal würde man gern zusätzliche
Informationen wie Metadaten zu Büchern, MP3s, Videodateien et cetera
hinterlegen und diese durchsuchen können. Das Dateisystem bietet jedoch
keine ausreichenden Möglichkeiten dazu. In dieser Ausgabe schauen wir uns
daher an, wie wir Ordner und Dateien in Access einlesen und diese in einem
TreeView-Steuerelement anzeigen können.

Tabellen und Datenmodellierung
Warum Beziehungen mit referenzieller Integrität?

www.access-im-unternehmen.de/1586Seite 2

ACCESS
IM UNTERNEHMEN

Stellen wir uns vor, wir hätten eine Tabelle zum Spei-
chern von Bestellungen und eine für die entsprechen-
den Bestellpositionen. Die Tabelle der Bestellungen
enthält ein Primärschlüsselfeld, welches die erste
Voraussetzung für ein konsistentes Datenmodell ist –
somit können alle Datensätze dieser Tabelle eindeutig
identifiziert werden.

Auch die Tabelle der Bestellpositionen enthält ein sol-
ches Primärschlüsselfeld. Neben den übrigen, typischen
Feldern für eine Bestellposition enthält diese auch ein
Feld, mit dem wir die Bestellposition einer Bestellung
zuordnen können – nennen wir es BestellungID.

Grundsätzlich ist die Zuordnung von Bestellpositionen
zu einer Bestellung also gewährleistet. Aber welche
Probleme können auftreten, wenn wir keine referenzielle
Integrität definieren?

Probleme bei fehlender Beziehung oder ohne
referenzielle Integrität
Schauen wir uns das Datenmodell aus Bild 1 an. Hier
sehen wir die beiden Tabellen, anhand derer wir die Vor-
teile der referenziellen Integrität beschreiben wollen.

Der Tabelle tblBestellungen fügen wir die Datensätze
aus Bild 2 hinzu.

Warum Beziehungen mit referenzieller Integrität?
In unseren Access-Audits mit unseren Kunden treffen wir immer wieder auf das fol-

gende Problem: Es gibt Tabellen, die zwar über ein Feld Datensätze aus anderen Ta-

bellen referenzieren, aber es wurde gar keine Beziehung für diese Zuordnung definiert.

Und wenn eine Beziehung angelegt wurde, wurde für diese keine referenzielle Integrität

festgelegt. Das birgt verschiedene Gefahren, die unter Umständen sogar Auswirkungen

auf den Unternehmensumsatz haben. Welche das sind und wie Sie diese Probleme be-

heben, zeigen wir in diesem Beitrag. Die Definition von Beziehungen mit referenzieller

Integrität ist essenziell und sollte, wenn diese noch nicht vorhanden sind, schnellstens

nachgerüstet werden. Das funktioniert in vielen Fällen aber gar nicht so leicht, weil die

Tabellen bereits inkonsistente Daten enthalten. Auch zur Identifizierung und Korrektur

solcher Datensätze liefert dieser Beitrag die passenden Lösungen.

Bild 1:  Tabellen der Beispieldatenbank

Bild 2:  Beispieldaten in der Tabelle tblBestellungen

Tabellen und Datenmodellierung
Warum Beziehungen mit referenzieller Integrität?

www.access-im-unternehmen.de/1586 Seite 3

ACCESS
IM UNTERNEHMEN

In der Tabelle tblBestell-
positionen legen wir nun
eine Bestellposition für die
erste Bestellung an, indem
wir das Feld BestellungID
auf den Wert 1 einstel-
len, also auf die erste
Bestellung der Tabelle
tblBestellungen. Soweit
ist das kein Problem – die
Bestellposition ist einer
Bestellung zugeordnet.

Das decken wir norma-
lerweise ab, indem wir
jeweils eine Bestellung
in einem Hauptformular
abbilden und in einem
Unterformular die Bestellpositionen. Wenn der Name des
Fremdschlüsselfelds in der Tabelle des Unterformulars
mit dem des Primärschlüsselfelds in der Datensatzquelle
des Hauptformulars übereinstimmt, erkennt Access dies
sogar beim Hinzufügen des Unterformulars und trägt
dies korrekt in die Eigenschaften Verknüpfen nach und
Verknüpfen von des Unterformular-Steuerelements ein
(siehe Bild 3).

Damit ordnet das Formular neue Bestellpositionen, die
wir in das Unterformular eintragen, automatisch dem
Bestelldatensatz im Hauptformular zu, weil das Fremd-
schlüsselfeld BestellungID direkt mit dem entsprechen-
den Primärschlüsselwert aus dem Hauptformular gefüllt
wird.

Bei 99 % der ausgewerteten Anwendungen
funktionierte dies nicht!
Auch wenn dies eine scheinbare Sicherheit vorgaukelt:
In unseren Untersuchungen von Kundendatenbanken
haben wir bei fast allen Anwendungen herausgefunden,
dass dies nicht zuverlässig funktioniert. Die Gründe
dafür sind nicht genauer bekannt, weil die betroffenen

Datensätze oft vor langer Zeit angelegt wurden. Aber: Wir
haben nahezu überall Probleme aufgedeckt, die zeigen,
dass Benutzer erfinderisch sind und Wege finden, um die
Zuordnung von Bestellungen und Bestellpositionen zu
unterminieren.

Dies zeigte sich in den folgenden Ergebnissen:

•	Entweder haben wir Datensätze in der Tabelle tblBe–
stellpositionen gefunden, die einen Fremdschlüssel-
wert aufweisen, der in der Tabelle tblBestellungen
nicht mehr vorhanden war (oder nie gewesen ist). Das
heißt, dass entweder Bestellungen gelöscht wurden,
ohne dass die entsprechenden Einträge in tblBestell-
positionen auch entfernt wurden (wahrscheinlichere
Variante), oder die Benutzer es geschafft haben,
Fremdschlüsselwerte einzutragen, für die es kein
Pendant im Primärschlüsselfeld der Tabelle tblBestel-
lungen gab.

•	Oder wir haben Einträge in der Tabelle tblBestellpo-
sitionen gefunden, die im Fremdschlüsselfeld Bestel-
lungID den Wert NULL enthielten, also leer waren.

Bild 3:  Bestellungen und Bestelldetails in Haupt- und Unterformular

Tabellen und Datenmodellierung
Warum Beziehungen mit referenzieller Integrität?

www.access-im-unternehmen.de/1586Seite 4

ACCESS
IM UNTERNEHMEN

Beides ist ungünstig, denn es wurden scheinbar einmal
Bestellungen plus Bestellpositionen eingetragen, die
dann nicht zur Ausführung kamen und somit potenziell
den Umsatz vermindert haben.

Dies kann passieren, wenn entweder das Formular nicht
sauber programmiert und mit entsprechenden Validie-
rungen ausgestattet wurde oder wenn die Benutzer
Wege gefunden haben, die Daten direkt in den zugrunde
liegenden Tabellen zu manipulieren und entweder Be-
stelldatensätze gelöscht oder Bestellpositionen verändert
haben.

Die Lösung ist also zum Beispiel, die Anwendung so
sicher zu machen, dass derartige Manipulationen
nicht mehr möglich sind. Dazu muss das Formular vor
Fehleingaben geschützt werden und/oder man muss
verhindern, dass die Benutzer direkten Zugriff auf die
Tabellen erhalten und so die Daten direkt in den Tabel-
len manipulieren.

Dies war in den meisten Anwendungen nicht der Fall,
auch wenn die Entwickler uns glaubhaft machen wollten,
dass sie alle notwendigen Maßnahmen getroffen hätten.

Es gibt jedoch noch eine einfachere Möglichkeit, um si-
cherzustellen, dass es keine Datensätze in einer Tabelle
wie tblBestellpositionen gibt, die keiner Bestellung
zugeordnet sind. Dabei handelt es sich um
das Anlegen einer Beziehung zwischen den
Tabellen (falls bisher nicht vorhanden) und
die Festlegung von referenzieller Integrität für
diese Beziehung.

Funktion der referenziellen Integrität
Wenn wir referenzielle Integrität definieren,
aktivieren wir zwei wichtige Funktionen für die
Beziehung. Nehmen wir als Beispiel wieder die
Beziehung zwischen der Tabelle tblBestellun-
gen und tblBestellpositionen. Wir fügen mit der
referenziellen Integrität eine Restriktion hinzu,

welche die Werte im Fremdschlüsselfeld BestellungID in
der Tabelle tblBestellpositionen auf die folgenden Werte
einschränkt:

•	Es sind alle Werte erlaubt, die im Primärschlüsselfeld
der verknüpften Tabelle vorhanden sind.

•	Und zusätzlich kann, wenn wir dies nicht anderweitig
unterbinden, der Wert NULL vorliegen.

Letzteres können wir verhindern, indem wir die Eigen-
schaft Eingabe erforderlich für das Fremdschlüsselfeld
auf Ja einstellen. Das ist sinnvoll, um auch diese Lücke zu
schließen. Es gibt jedoch Fälle abseits von Bestellungen
und Bestellpositionen, wo man vielleicht erst die Daten-
sätze in der Tabelle mit dem Fremdschlüsselfeld anlegt
und diese erst später zuordnen möchte – dann kann man
NULL-Werte zulassen.

Hier sollte man jedoch regelmäßig prüfen, ob sich keine
nicht zugeordneten Datensätze in dieser Tabelle befin-
den.

Wenn wir keine referenzielle Integrität festlegen, können
wir eine Bestellposition zur Tabelle tblBestellpositionen
hinzufügen, die einen Wert im Feld BestellungID enthält,
der nicht in der Tabelle tblBestellungen enthalten ist
(siehe Bild 4).

Bild 4:  Bestellposition ohne passende Bestellung

Tabellen und Datenmodellierung
Warum Beziehungen mit referenzieller Integrität?

www.access-im-unternehmen.de/1586 Seite 5

ACCESS
IM UNTERNEHMEN

Wenn keine referenzielle
Integrität festgelegt werden
kann
Wir versuchen nun, eine Bezie-
hung mit referenzieller Integrität
für die Tabellen anzulegen. Dazu
ziehen wir im Beziehungen-Fens-
ter das Feld BestellungID der
Tabelle tblBestellpositionen auf
die Tabelle tblBestellungen. Es
erscheint der Dialog Beziehungen
bearbeiten, wo wir die Option Mit
referenzieller Integrität aktivie-
ren (siehe Bild 5).

Wenn wir jetzt auf Erstellen
klicken, erhalten wir die Fehler-
meldung aus Bild 6. Der Grund ist
offensichtlich: Wir haben in der
Tabelle tblBestellpositionen Werte im Feld BestellungID,
die in der Tabelle tblBestellungen nicht vorhanden sind.

Dies ist der einfachste Test, um zu prüfen, ob alle Daten-
sätze aus tblBestellpositionen korrekt der Tabelle
tblBestellungen zugeordnet sind.

Etwas schwieriger wird es, im Anschluss herauszufinden,
welche der Datensätze der Tabelle tblBestellpositionen
das Definieren referenzieller Integrität verhindern – dazu
weiter unten mehr.

Erfolgreiches Festlegen referenzieller Integrität
In diesem Fall löschen wir einfach den Datensatz, der auf
die nicht vorhandene Bestellung mit dem Wert 12 im Feld
BestellungID verweist. Danach können wir die referen-
zielle Integrität für diese Tabelle aktivieren.

Das Ergebnis sehen wir in Bild 7. Dass es sich um eine
Beziehung mit referenzieller Integrität handelt, erkennen
wir am Unendlich-Symbol auf der einen und der Pfeilspit-
ze auf der anderen Seite.

Bild 5:  Versuch, referenzielle Integrität zu definieren

Bild 6:  Fehlermeldung beim Versuch, referenzielle Integrität zu
definieren

Tabellen und Datenmodellierung
Reflexive 1:n-Beziehung zu m:n-Beziehung

www.access-im-unternehmen.de/1587Seite 10

ACCESS
IM UNTERNEHMEN

Das Abbilden von reflexiven Beziehungen über eine
1:n-Beziehung ist an sich nicht falsch. Im Beispiel geht
es um einen Sportverein, dessen Mitglieder mit einer
Access-Datenbank verwaltet werden. In der Tabelle
tblMitglieder gibt es zwei Felder, um die partnerschaft-
liche Beziehung zwischen zwei Mitgliedern abzubilden.
Das erste heißt PartnerID und dient dazu, die ID eines
anderen Datensatzes dieser Tabelle zu referen-
zieren und damit anzugeben, welches andere
Mitglied mit diesem Mitglied verbunden ist.
Zusätzlich gibt es ein Ja/Nein-Feld namens
Ehepartner, das angibt, ob es sich um eine
amtlich dokumentierte Beziehung handelt,
sprich um eine eheliche Beziehung (Ja) oder
um eine Beziehung ohne Trauschein (Nein). Der
Entwurf der Tabelle sieht in abgespeckter Form
wie in Bild 1 aus.

Das erste Problem, das sich daraus ergibt, ist
die wechselseitige Abhängigkeit. Wenn wir für
Mitglied A das Mitglied B als Partner festgelegt
haben, müssen wir für Mitglied B auch Mitglied
A als Partner hinterlegen – und für beide muss

das Feld Ehepartner den gleichen Wert enthalten. Ande-
renfalls erhalten wir einen Fall von inkonsistenten Daten.

Diese Inkonsistenz kann nicht nur den Fall enthalten,
dass die Beziehung nur in einer Richtung dokumentiert
ist, etwa von Mitglied A zu Mitglied B. Es kann auch
passieren, dass nicht nur Mitglied B als Partner von Mit-

Reflexive 1:n-Beziehung zu m:n-Beziehung
Manchmal legt man eine 1:n-Beziehung zwischen zwei Tabellen an, um später festzu-

stellen, dass eine m:n-Beziehung doch die funktionalere Variante ist. Ein Beispiel sind

reflexive Beziehungen, mit denen man etwa Vater-Kind-Beziehungen abbildet oder Part-

ner-Beziehungen. Andere Beispiele sind solche wie zwischen Produkten und Kategorien

– man dachte zunächst, dass es reicht, wenn man jedes Produkt nur einer Kategorie zu-

ordnen kann, aber man dann erkennt, dass es für verschiedene Anwendungsfälle doch

günstiger wäre, wenn man ein Produkt mehr als einer Kategorie zuordnen kann. Ähn-

liche Fälle sind Mitarbeiter und Funktionen oder Abteilungen. In diesem Beitrag schau-

en wir uns das Beispiel eines Kunden an, der in seinem Sportverein partnerschaftliche

Beziehungen über ein Fremdschlüsselfeld der Tabelle tblMitglieder auf diese selbst ab-

gebildet hat. Hier gab es mehrere Gründe, um diese Beziehung in eine m:n-Beziehung

umzuwandeln. Welche das sind und wie wir die Umwandlung durchgeführt haben, lesen

Sie in diesem Beitrag.

Bild 1:  Entwurf der Tabelle tblMitglieder

Tabellen und Datenmodellierung
Reflexive 1:n-Beziehung zu m:n-Beziehung

www.access-im-unternehmen.de/1587 Seite 11

ACCESS
IM UNTERNEHMEN

glied A angegeben wird, sondern auch noch Mitglied C
als Partner von Mitglied B. Es konnte auch vorkommen,
dass ein Mitglied als Ehepartner von mehreren anderen
Mitgliedern angegeben wird.

Das zweite Problem bei der Tabelle tblMitglieder bei
diesem Kunden war, dass bereits sehr viele andere
Tabellen auf die Tabelle tblMitglieder verwiesen hatten
und somit die Grenze von maximal 32 Beziehungen er-
reicht war.

Diese Grenze gilt für Beziehungen, die über ein Fremd-
schlüsselfeld in dieser Tabelle hergestellt werden, wobei
wir hier sehr viele Lookup-Tabellen vorgefunden haben.

Die Beziehung war wie in Bild 2 aufgebaut, wobei das
Fremdschlüsselfeld PartnerID auf das Feld MitgliedID
der gleichen Tabelle verweist.

Mehrere Partner für das gleiche Mitglied
verhindern
Die Möglichkeit, dass ein Mitglied für mehr als ein anderes
Mitglied als Partner ausgewählt wird, konnten wir durch
das Setzen eines eindeutigen Schlüssels für das Fremd-
schlüsselfeld PartnerID erreichen.

Dadurch, dass nun jede MitgliedID nur einmal in das Feld
PartnerID eingetragen werden konnte, stellen wir sicher,
dass es nur monogame Beziehungen gibt. Hier lassen wir
außen vor, dass es Kulturen gibt, in denen dies möglich ist.

Auswahl einer Beziehung mit sich
selbst verhindern
Eine weitere mögliche Fehleingabe ist die
Auswahl des Mitglieds selbst als Partner.

Dies können wir verhindern, indem wir
im Formular, das wir gleich beschreiben,
nur die anderen Datensätze der Tabelle
tblMitglieder anzeigen.

Nur eindeutige Partnerschaften erlauben
Wenn wir sicherstellen wollen, dass die in einer Part-
nerschaft befindlichen Mitglieder immer wechselseitig
miteinander verbunden werden, müssen wir das über die
Anwendungslogik realisieren – allein über den Tabellen-
entwurf können wir das mit einem Fremdschlüsselfeld,
das die gleiche Tabelle referenziert, nicht erreichen.

Wir müssen also im Formular zum Verwalten der Mit-
glieder eine VBA-Funktion einbauen, die beim Auswählen
des Partners eines Mitglieds automatisch auch das Feld
PartnerID des Partners einstellt – und die auch den glei-
chen Wert im Ja/Nein-Feld Ehepaar für die verknüpften
Datensätze festlegt.

Im Entwurf der Tabelle tblMitglieder haben wir für das
Fremdschlüsselfeld PartnerID ein Nachschlagefeld

Bild 2:  Reflexive Beziehung der Mitglieder

Bild 3:  Auswahlfeld für den Partner

Tabellen und Datenmodellierung
Reflexive 1:n-Beziehung zu m:n-Beziehung

www.access-im-unternehmen.de/1587Seite 12

ACCESS
IM UNTERNEHMEN

definiert, damit man den Partner einfach auswählen kann
(siehe Bild 3).

Formular zum Verwalten der Mitglieder und
Partnerschaften
Um die Mitglieder zu verwalten und die Partner zuordnen
zu können, haben wir ein Formular wie in Bild 4 vorgefun-
den.

Für das Steuerelement cboPartnerID haben wir zunächst
die folgende Datensatzherkunft eingestellt, um aus allen
Mitgliedern auswählen zu können:

SELECT MitgliedID, Vorname & ' ' & Nachname

FROM tblMitglieder

Damit beim Anzeigen eines Datensatzes nicht das aktuelle
Mitglied selbst erscheint und auch nicht solche Mitglieder,
die bereits einer Partnerschaft zugeordnet sind, haben wir
für das Ereignis Beim Anzeigen die folgende Prozedur
hinterlegt:

Private Sub Form_Current()

 Me.cboPartnerID.RowSource = "SELECT MitgliedID, " _

 & "Vorname & ' ' & Nachname FROM tblMitglieder " _

 & "WHERE NOT (MitgliedID = " & Me.MitgliedID & ") " _

 & " AND (MitgliedID NOT IN (" _

 & " SELECT PartnerID FROM tblMitglieder " _

 & " WHERE PartnerID IS NOT NULL))"

End Sub

Für das Mitglied mit dem Wert 1 im Feld MitgliedID er-
halten wir so die folgende Abfrage:

SELECT MitgliedID, Vorname & ' ' & Nachname

FROM tblMitglieder

WHERE NOT (MitgliedID = 1)

AND (MitgliedID NOT IN (

 SELECT PartnerID FROM tblMitglieder

 WHERE PartnerID IS NOT NULL)

)

Damit erscheinen, wenn wir noch keinem Mitglied einen
Partner zugewiesen haben, für jedes Mitglied nur die
aktuell verfügbaren Partner im Feld cboPartnerID – siehe
Bild 5.

Partnerschaft für den Partner einstellen
Wenn wir nun für das Mitglied mit dem Wert 1 im Feld
MitgliedID einen Partner auswählen, etwa den mit dem
Wert 2, soll für das Mitglied 2 das Mitglied 1 als Partner
eingestellt werden.

Dazu hinterlegen wir für das Ereignis Nach Aktualisie-
rung des Kombinationsfeldes cboPartnerID die folgende
Prozedur:

Private Sub cboPartnerID_AfterUpdate()

 Dim db As DAO.Database

 Set db = CurrentDb

 db.Execute "UPDATE tblMitglieder SET PartnerID = " _

Bild 4:  Formular zur Mitgliederverwaltung

Bild 5:  Formular zur Mitgliederverwaltung in der Formularansicht

Tabellen und Datenmodellierung
Reflexive 1:n-Beziehung zu m:n-Beziehung

www.access-im-unternehmen.de/1587 Seite 13

ACCESS
IM UNTERNEHMEN

 & Me.MitgliedID & " WHERE MitgliedID = " _

 & Me.cboPartnerID, dbFailOnError

End Sub

Die so ausgeführte Aktionsabfrage lautet beispielsweise:

UPDATE tblMitglieder SET PartnerID = 1 WHERE MitgliedID = 2

Damit erhalten wir das gewünschte Ergebnis in der zu-
grunde liegenden Tabelle, aber wenn wir zum Datensatz
des gewählten Partners wechseln und dann zurück, zeigt
das Kombinationsfeld nun für beide gar keinen Wert mehr
an. Das liegt daran, dass wir die bereits vergebenen Part-
ner vollständig ausschließen und diese somit auch für den
ausgewählten Eintrag nicht mehr angezeigt werden. Das
Kombinationsfeld enthält zwar den korrekten Eintrag, was
wir im Direktbereich mit folgender Anweisung ermitteln
können:

? Screen.ActiveControl.Value

 2

Aber da der Eintrag nicht in der Datensatzherkunft des
Kombinationsfeldes enthalten ist, erscheint der Anzeige-
wert nicht.

Wir müssen die Datensatzherkunft also nochmals anpas-
sen, indem wir mit der OR-Klausel am Ende den gewähl-
ten Partner wieder mit in die Auswahl hineinnehmen –
hier der besseren Lesbarkeit halber direkt mit den Werten
1 für MitgliedID und 2 für PartnerID:

SELECT MitgliedID, Vorname & ' ' & Nachname

FROM tblMitglieder

WHERE NOT (MitgliedID = 1) AND (MitgliedID NOT IN (

 SELECT PartnerID FROM tblMitglieder

 WHERE PartnerID IS NOT NULL)

OR MitgliedID = 2)

Damit sehen wir nun den ausgewählten Partner sowohl
für den ersten als auch für den zweiten Datensatz. In der

OR-Bedingung sorgen wir außerdem mit der Nz-Funktion
dafür, dass im Falle des Wertes NULL im Feld PartnerID
der Wert 0 verwendet wird – sonst erhalten wir beim
Wechsel von einem Datensatz ohne PartnerID zu einem
anderen Datensatz einen Fehler.

Schließlich müssen wir auch noch dafür sorgen, dass der
Wert für das Feld Ehepaar für das als Partner angegebene
Mitglied so einstellen wie für das Mitglied selbst. Dazu
fügen wir eine Prozedur für das Ereignis Nach Aktualisie-
rung des Kontrollkästchens chkEhepaar hinzu:

Private Sub chkEhepaar_AfterUpdate()

 Dim db As DAO.Database

 Set db = CurrentDb

 db.Execute "UPDATE tblMitglieder SET Ehepaar = " _

 & IIf(Me.chkEhepaar = True, "True", "False") _

 & " WHERE MitgliedID = " & Me.cboPartnerID, _

 dbFailOnError

End Sub

Warum auf m:n-Beziehung umstellen?
Eingangs haben wir erwähnt, dass sich viele der hier
beschriebenen Probleme beheben lassen, wenn wir die
reflexive Beziehung über die 1:n-Verknüpfung aufheben,
die Felder PartnerID und Ehepaar entfernen und beides
in eine m:n-Beziehung auslagern.

Wir schauen uns erst einmal an, wie die Verknüpfungs-
tabelle aussieht und wie wir diese mit der Tabelle tblMit-
glieder verknüpfen. Damit das Beispiel mit der reflexiven
1:n-Beziehung erhalten bleibt, erstellen wir in der Bei-
spieldatenbank eine Kopie der Tabelle tblMitglieder (siehe
Bild 6) unter dem Namen tblMitgliederMN. Außerdem
fügen wir die Tabelle tblPartnerschaften hinzu, die fol-
gende Felder enthält:

•	PartnerschaftID: Primärschlüsselfeld der Tabelle

•	PartnerA: Erster Partner, Fremdschlüsselfeld zur Tabel-
le tblMitglieder, eindeutiger Index, Eingabe erforderlich

Tabellen und Datenmodellierung
Reflexive 1:n-Beziehung zu m:n-Beziehung

www.access-im-unternehmen.de/1587Seite 14

ACCESS
IM UNTERNEHMEN

•	PartnerB: Zweiter Partner, Fremdschlüsselfeld zur
Tabelle tblMitglieder, eindeutiger Index, Eingabe er-
forderlich

•	Ehepaar: Ja/Nein-Feld, das angibt, ob es sich um ein
Ehepaar handelt

Dadurch, dass wir einen eindeutigen Index auf die Felder
PartnerA und PartnerB legen, stellen wir sicher,
dass jedes Mitglied nur einmal als PartnerA oder
PartnerB angegeben werden kann.

Wir haben allerdings noch eine kleine Lücke:
Wir können die Kombination aus Mitglied 1
und Mitglied 2 immer noch zweimal angeben
– einmal mit dem Wert 1 im Feld PartnerA
und 2 in PartnerB und umgekehrt. Außer-
dem können wir theoretisch auch Mitglied
1 sowohl in das Feld PartnerA als auch in
PartnerB eingeben.

Dies verhindern wir, indem wir für die Tabelle
eine Gültigkeitsregel anlegen, die wir wie in
Bild 7 definieren.

Wenn wir nun eine Partnerschaft eingeben, bei
welcher der Wert von PartnerA kleiner oder
gleich der von PartnerB ist, erhalten wir die
Meldung aus Bild 8.

Diese Regel ist nur für den Fall vorgesehen, dass
jemand versucht, Daten direkt über die Tabelle
einzugeben. Das eigentliche Anlegen erledigen
wir ohnehin über das Formular.

Beziehung zwischen Mitgliedern und
Partnerschaften
Damit nur Werte aus dem Primärschlüsselfeld
der Tabelle tblMitglieder eingegeben werden
können, fügen wir dem Datenmodell die beiden
Beziehungen aus Bild 9 hinzu.

Bild 6:  Aktueller Zustand der Daten in der Tabelle tblMitglieder

Bild 7:  Tabelle tblPartnerschaften

Bild 8:  Meldung beim Eingeben ungültiger Daten

Tabellen und Datenmodellierung
Reflexive 1:n-Beziehung zu m:n-Beziehung

www.access-im-unternehmen.de/1587 Seite 15

ACCESS
IM UNTERNEHMEN

Wichtig ist hier die Rich-
tung, in der wir die Be-
ziehungspfeile ziehen. Da
die beiden Felder PartnerA
und PartnerB mit einem
eindeutigen Index ver-
sehen wurden, müssen wir
den Pfeil von tblMitglieder
auf tblPartnerschaften
ziehen, sodass die Mitglie-
dertabelle unter Tabelle/
Abfrage und die Partner-
schaftstabelle unter Ver-
wandte Tabelle/Abfrage
angegeben wird.

Entsprechend könnten wir
keine referenzielle Integrität
für die Beziehungen festlegen, da dann das Feld Mit-
gliedID der Tabelle tblMitglieder als Fremdschlüsselfeld
betrachtet würde und es darin Werte gibt, die zurzeit noch
nicht im Feld PartnerA oder PartnerB der Tabelle tblPart-
nerschaften enthalten sind.

Daten migrieren
Es gibt bereits eingetragene Partnerschaften in der Tabelle
tblMitarbeiterMN, die wir nun über die Verknüpfungsta-
belle tblPartnerschaften abbilden wollen.

Das ist anspruchsvoll, weil wir die Partnerschaften so
eintragen müssen, dass der Wert im Feld PartnerA immer
kleiner als der in PartnerB ist. Wir könnten starten, in-
dem wir die Partnerschaften aufsteigend nach der ID des
Mitglieds sortieren und zusätzlich die PartnerID und den
Ehepaar-Status mit folgender Abfrage ausgeben lassen:

SELECT

 tblMitgliederMN.MitgliedID,

 tblMitgliederMN.PartnerID,

 tblMitgliederMN.Ehepaar

FROM

 tblMitgliederMN

WHERE

 (((tblMitgliederMN.PartnerID) IS NOT NULL))

ORDER BY

 tblMitgliederMN.MitgliedID;

Dies liefert jede Partnerschaft in doppelter Ausführung,
jeweils einmal mit jeder Mitglieds-ID im Feld MitgliedID
und einmal im Feld PartnerID (siehe Bild 10).

Wenn wir hier allerdings den Ausdruck, den wir als Gültig-
keitsregel für die Tabelle tblPartnerschaften verwendet
haben, als Kriterium einsetzen, erhalten wir jede Partner-
schaft nur noch einmal:

Bild 9:  Beziehungen für die Verwaltung von Partnerschaften per m:n-Beziehung

Bild 10:  Ausgabe aller Partnerschaften laut tblMitgliederMN

Tabellen und Datenmodellierung
Reflexive 1:n-Beziehung zu m:n-Beziehung

www.access-im-unternehmen.de/1587Seite 16

ACCESS
IM UNTERNEHMEN

SELECT

 tblMitgliederMN.MitgliedID,

 tblMitgliederMN.PartnerID,

 tblMitgliederMN.Ehepaar

FROM

 tblMitgliederMN

WHERE

 (

 ((tblMitgliederMN.MitgliedID) < [PartnerID])

 AND ((tblMitgliederMN.PartnerID) IS NOT NULL)

)

ORDER BY

 tblMitgliederMN.MitgliedID;

Für diese Abfrage aktivieren wir nun den Abfragetyp
Anfügen und geben als Zieltabelle die Tabelle tblPart-
nerschaften an. Im Entwurf weisen wir das Feld Mit-
gliedID dem Feld PartnerA und das Feld PartnerID dem
Feld PartnerB hinzu. Das Feld Ehepaar weisen wir dem
gleichnamigen Feld der Tabelle tblPartnerschaften zu
(siehe Bild 11).

Führen wir diese Abfrage aus, erhalten wir das Ergebnis
aus Bild 12. Durch das Kriterium landen auch nur gültige
Datensätze in dieser Abfrage – sollte die Tabelle tblMit-
gliederMN zuvor Datensätze enthalten haben, bei denen
PartnerA gleich PartnerB wäre, oder es gäbe inkonsis-
tente Daten, würden diese nicht angelegt werden.

Es ist allerdings nicht aus-
zuschließen, dass für Mit-
glied 1 eine Partnerschaft
mit Mitglied 2 angelegt
war und für Mitglied 2
eine Partnerschaft mit
Mitglied 3. Dies können
wir über das Datenmodell
in der aktuellen Form
nicht ausschließen und
müssten es letztlich über
die Anwendungslogik

steuern. Allerdings bietet Access auch noch die Daten-
makros an. Wie wir damit auch die letzte mögliche
Fehleingabe verhindern, zeigen wir in den folgenden
Abschnitten.

Bild 11:  Anfügeabfrage für die Partnerschaftstabelle

Bild 12:  Ergebnis der Anfügeabfrage

Bild 13:  Datenmakro für das Ereignis Vor Änderung anlegen

Mit Formularen arbeiten
Erledigt-Status in Haupt- und Unterformular synchron

www.access-im-unternehmen.de/1588 Seite 25

ACCESS
IM UNTERNEHMEN

Datenmodell
Zunächst stellen wir die beiden Tabellen
zusammen, mit denen wir die Produktions-
aufträge und die enthaltenen, zu fertigenden
Teile verwalten.

Die erste Tabelle heißt tblProduktionsauf-
traege und soll die Felder aus Bild 1 ent-
halten. Neben dem Primärschlüsselfeld und
dem Feld für die Bezeichnung des Produk-
tionsauftrags finden wir das Ja/Nein-Feld
Erledigt.

Die zweite Tabelle namens tblProduktions-
teile enthält ähnliche Felder, also auch das
Feld Erledigt mit dem Datentyp Ja/Nein.
Außerdem finden wir hier noch das Feld
ProduktionsauftragID, mit dem wir das zu
produzierende Teil dem jeweiligen Produk-
tionsauftrag zuweisen können (siehe Bild 2).

Zwischen den beiden Tabellen stellen wir
über das Fremdschlüsselfeld Produktions-

Erledigt-Status in Haupt- und Unterformular synchron
Ein Kunde hatte neulich die Anforderung, dass er Produktionsaufträge mit den zu pro-

duzierenden Teilen im Haupt- und Unterformular abbilden wollte. An sich kein Prob-

lem, wenn man Haupt- und Unterformular entsprechend verknüpft. Er wünschte sich

jedoch sowohl in der Tabelle der Produktionsaufträge als auch in der für die Teile jeweils

ein Kontrollkästchen, das den Status abbildet. Wenn der vollständige Auftrag erledigt

ist, soll dieser samt Teileliste einen Haken erhalten. Ist der Auftrag noch offen, sind

alle Kontrollkästchen leer. Aber wenn nicht alle Teile fertig produziert sind, sollte dies

im Produktionsauftrag auf eine spezielle Art gekennzeichnet werden. Er hat dabei den

Dreifachstatus des Kontrollkästchens entdeckt und wünschte sich, dass das Kontroll-

kästchen in diesem Fall für den Produktionsauftrag den dritten Status anzeigt – in ak-

tuellen Access-Versionen ein gefülltes Kontrollkästchen mit einem Minus-Zeichen. Wie

das gelingt und wie wir die Zustände von Produktionsauftrag und Teilen synchron hal-

ten, zeigen wir in diesem Beitrag.

Bild 1:  Tabelle für die Produktionsaufträge

Bild 2:  Tabelle für die Produktionsteile

Mit Formularen arbeiten
Erledigt-Status in Haupt- und Unterformular synchron

www.access-im-unternehmen.de/1588Seite 26

ACCESS
IM UNTERNEHMEN

auftragID eine Beziehung her und definieren
referenzielle Integrität zwischen den beiden
Tabellen (siehe Bild 3).

Formulare für das Beispiel
Nun erstellen wir zunächst das Unter-
formular, das die Produktionsteile zu
einem Produktionsauftrag anzeigen soll.
Dazu fügen wir einem leeren Formular die
Tabelle tblProduktionsteile als Datensatz-
quelle hinzu und ziehen alle Felder außer
ProduktionsauftragID zur Detailansicht
hinzu.

Die Eigenschaft Standardansicht
legen wir auf den Wert Datenblatt
fest. Anschließend speichern wir
das Formular unter dem Namen
sfmProduktionsauftraege und
schließen es (siehe Bild 4).

Das Hauptformular erstellen wir
auf ähnliche Weise, allerdings
verwenden wir hier die Tabelle
tblProduktionsauftraege als
Datensatzquelle.

Zudem ziehen wir hier noch das
soeben erstellte Unterformular
sfmProduktionsauftraege in den
Detailbereich, sodass das Ergebnis
wie in Bild 5 aussieht.

Hier prüfen wir noch, ob die Eigen-
schaften Verknüpfen von und
Verknüpfen nach für das Unter-
formular-Steuerelement korrekt
eingestellt wurden.

Anschließend können wir in die
Formularansicht wechseln und

Bild 3:  Beziehung zwischen den beiden Tabellen

Bild 4:  Entwurf des Unterformulars

Bild 5:  Entwurf des Hauptformulars

Mit Formularen arbeiten
Erledigt-Status in Haupt- und Unterformular synchron

www.access-im-unternehmen.de/1588 Seite 27

ACCESS
IM UNTERNEHMEN

direkt einige Beispieldaten in Haupt- und Unter-
formular eingeben (siehe Bild 6).

Erledigt-Status synchron halten
Damit kommen wir zur eigentlichen Aufgabe:

•	Wenn der Benutzer nun das Feld Erledigt für
den Produktionsauftrag im Hauptformular
markiert, sollen auch alle Einträge im Unter-
formular markiert werden.

•	Wenn der Benutzer die Markierung dieses
Feldes aufhebt, sollen auch alle Einträge im
Unterformular abgewählt werden.

•	Setzt der Benutzer die Markierung für einen Eintrag im
Unterformular oder hebt diese auf, soll geprüft wer-
den, ob aktuell alle Einträge markiert sind oder auch
nur einige oder keiner. Sind alle Einträge markiert, soll
auch das Feld Erledigt im Hauptformular einen Haken
erhalten. Wenn kein Haken markiert ist, soll Erledigt im
Hauptformular auch abgewählt werden. Und schließlich
fehlt noch der Fall, dass nur einige Einträge markiert
sind: Dann soll das Feld Erledigt im Hauptformular den
dritten Status eines Kontrollkästchens erhalten.

Wie das gelingt, beschreiben wir in den
nächsten Abschnitten.

Kontrollkästchen umbenennen
Zuvor versehen wir die beiden Kontroll-
kästchen im Haupt- und Unterformular
jedoch noch mit einem entsprechenden
Präfix, hier chk für Checkbox (Kontroll-
kästchen). Beide heißen nun chkErledigt.

Produktionsauftrag als vollständig
erledigt markieren
Wenn der Benutzer den Produktionsauf-
trag als erledigt kennzeichnet, sollen alle
Produktionsteile zu diesem Auftrag auch

als erledigt markiert werden. Um auf die Änderung des
Zustandes des Kontrollkästchens chkErledigt im Haupt-
formular zu reagieren, hinterlegen wir eine Ereignisproze-
dur für das Ereignis Nach Aktualisierung (siehe Bild 7).

Dazu wählen wir hier den Eintrag [Ereignisprozedur] aus
und klicken auf die Schaltfläche mit den drei Punkten.

Die jetzt im VBA-Editor erscheinende Ereignisprozedur
füllen wir wie in Listing 1. Hier deklarieren wir ein Data-
base-Objekt, das wir mit einem Verweis auf die aktuelle
Datenbank füllen, sowie eine Variable namens bolErle-

Bild 6:  Eingabe von Beispieldaten

Bild 7:  Anlegen einer Ereignisprozedur für das Kontrollkästchen

Mit Formularen arbeiten
Erledigt-Status in Haupt- und Unterformular synchron

www.access-im-unternehmen.de/1588Seite 28

ACCESS
IM UNTERNEHMEN

digt, in die wir den aktuellen Zustand des
Kontrollkästchens chkErledigt aus dem
Hauptformular einlesen.

Dann führen wir eine Aktualisierungs-
abfrage aus, die für alle Datensätze der
Tabelle tblProduktionsteile, die zum
aktuellen Produktionsauftrag gehören,
den Wert aus der Variablen bolErledigt
einträgt.

Dabei konvertieren wir den Wert des
Boolean-Feldes mit der CInt-Funktion
noch in den Datentyp Integer. Das ist
nötig, da Boolean-Werte bei der Ausgabe als Wahr oder
Falsch ausgegeben werden und die SQL-Anweisung
damit nichts anfangen kann. Also transformieren wir den
Wert zuvor noch in -1 oder 0.

Danach aktualisieren wir noch die Daten im Unterformular
und erhalten das Ergebnis aus Bild 8.

Hier stellt sich noch die Frage, ob wir dies ohne vorherige
Rückfrage durchführen wollen, wenn bereits einige Ein-
träge im Unterformular abgehakt wurden.

Zur Sicherheit bauen wir also noch eine Meldung ein,
die wir aber nicht erst im Ereignis Nach Aktualisierung
aufrufen, sondern bereits im Ereignis Vor Aktualisierung

Bild 8:  Synchronisierte Daten in Haupt- und Unterformular

Private Sub chkErledigt_AfterUpdate()
 Dim db As DAO.Database
 Dim bolErledigt As Boolean

 Set db = CurrentDb

 bolErledigt = Me.chkErledigt
 db.Execute "UPDATE tblProduktionsteile SET Erledigt = " & CInt(bolErledigt) & " WHERE ProduktionsauftragID = " _
 & Me.ProduktionsauftragID, dbFailOnError
 Me.sfmProduktionsauftraege.Form.Requery
End Sub

Listing 1:  Übertragen der Markierung aus dem Hauptformular in das Unterformular

Private Sub chkErledigt_BeforeUpdate(Cancel As Integer)
 If MsgBox("Dies setzt den Status Erledigt für alle Teile auf '" & CBool(Me.chkErledigt) & "'. Fortsetzen?", _
 vbYesNo, "Status ändern") = vbNo Then
 Cancel = True
 End If
End Sub

Listing 2:  Rückfrage, ob die Änderung übertragen werden soll

Datenzugriff programmieren
Daten bearbeiten: Execute vs. Recordset in DAO

www.access-im-unternehmen.de/1580Seite 34

ACCESS
IM UNTERNEHMEN

DAO oder ADODB?
Mit den eingangs erwähnten beiden Möglichkeiten der
Anlage und Änderung von Daten mit Execute beziehungs-
weise AddNew/Edit und Update decken wir die Optionen
ab, die uns die DAO-Bibliothek bietet. Wir könnten dies
auch noch mit den Methoden der ADODB-Bibliothek
erledigen.

Wie wir diese Aufgaben mit ADODB erledigen, beschreiben
wir in einem weiteren Beitrag namens Daten bearbeiten:
Execute vs. Recordset in ADODB (www.access-im-
unternehmen.de/1582).

Unterschied Execute vs. AddNew/Update
Mit der Execute-Anweisung, der wir eine INSERT INTO-
SQL-Anweisung übergeben, und der Kombination aus
AddNew und Update eines Recordset-Objekts erreichen
wir grundsätzlich das Gleiche: Wir fügen einer Tabelle
einen Datensatz hinzu, der die gewünschten Werte enthält.

Das gilt auch für das Ändern von Datensätzen. Wir können
dies mit einer UPDATE-SQL-Abfrage erledigen, die wir
über die Execute-Methode absetzen, oder wir verwenden

die Edit-Methode, führen dann die Änderungen an den
gewünschten Feldern durch und speichern diese mit der
Update-Methode in der Tabelle.

Mit beiden Methoden können wir bei der Neuanlage eines
Datensatzes anschließend die ID des Primärschlüsselwer-
tes auslesen, sofern für dieses Feld die Autowert-Funk-
tion aktiviert ist.

Die weiteren Unterschiede, die wir in den folgenden
Abschnitten besprechen werden, beziehen sich auf den
Komfort, der sich beim Zusammenstellen der jeweiligen
Codezeilen ergibt.

Wenn wir die Execute-Methode verwenden wollen,
müssen wir uns grundlegend mit der Schreibweise von
SQL-Anweisungen auskennen, zumindest für die SQL-Ab-
fragen INSERT INTO und UPDATE.

Außerdem sind hier im Gegensatz zur Verwendung von
AddNew/Edit und Update noch einige Besonderheiten
bei der Angabe der einzufügenden oder zu ändernden
Feldwerte relevant: Wenn wir beispielsweise Textfelder

Daten bearbeiten: Execute vs. Recordset in DAO
Es kommt regelmäßig vor, dass wir Daten in den Tabellen unserer Datenbank bearbeiten

müssen. Normalerweise geschieht das über die Benutzeroberfläche. Aber es gibt auch

Konstellationen, in denen wir automatisiert Daten zu einer Tabelle hinzufügen oder diese

ändern wollen. Manchmal legen wir vollständige Hierarchien inklusive der Daten in ver-

knüpften Tabellen. Oder wir ändern auch nur den Wert eines einzelnen Feldes in einem

Datensatz. Dazu können wir verschiedene Techniken nutzen, die wir in diesem Beitrag

einmal vorstellen und vergleichen wollen. Dabei konzentrieren wir uns auf das Hinzu-

fügen oder Bearbeiten von einzelnen Datensätzen und schauen uns zwei verschiedene

Ansätze an: Das Anlegen oder Aktualisieren von Daten mit INSERT INTO oder UPDATE-

Abfragen, die wir per VBA zusammenstellen und dann mit der Execute-Methode ausfüh-

ren oder das Anlegen mit der Recordset-Methode AddNew/Update und das Bearbeiten

mit der Edit-Methode.

Datenzugriff programmieren
Daten bearbeiten: Execute vs. Recordset in DAO

www.access-im-unternehmen.de/1580 Seite 35

ACCESS
IM UNTERNEHMEN

füllen wollen, müssen wir diese in Hochkomma-
ta einfassen, bei Datumsfeldern müssen wir ein
SQL-kompatibles Datumsformat verwenden und
bei Zahlen mit Dezimaltrennzeichen müssen wir
sicherstellen, dass das vom SQL Server verwen-
dete Dezimaltrennzeichen verwendet wird.

Außerdem müssen wir auch die Werte für Ja/
Nein-Felder entsprechend formatieren.

Die Methoden AddNew/Edit plus Update sind
hier wesentlich einfacher in der Handhabung.
Wir können alle Werte einfach übergeben, so wie
wir auch in VBA damit arbeiten.

Beispieltabelle
Als Beispiel verwenden wir die Tabelle tblKun-
den aus Bild 1.

Diese enthält alle relevanten Datentypen, die wir für die
unterschiedlichen Schreibweisen in INSERT INTO- und
UPDATE-Abfragen benötigen: Kurzer Text, Datum, Ja/
Nein und Währung (stellvertretend für alle Felddatentypen
mit Nachkommastellen).

Einfügen von Datensätzen per AddNew/Update
Wir schauen uns zuerst das Einfügen eines Datensatzes
mit der AddNew- und der Update-Methode eines Record-
sets an.

Hier deklarieren wir als Erstes zwei Variablen. Mit db
referenzieren wir das mit der CurrentDb-Funktion ermit-
telte Database-Objekt der aktuellen Datenbank. Mit rst
holen wir uns ein Recordset-Objekt auf Basis der Tabelle
tblKunden.

Dazu nutzen wir die OpenRecordset-Methode des Data-
base-Objekts:

Public Sub Einfuegen_AddNew()

 Dim db As DAO.Database

 Dim rst As DAO.Recordset

 Set db = CurrentDb

 Set rst = db.OpenRecordset("tblKunden", dbOpenDynaset)

Danach können wir direkt mit dem Einfügen eines Daten-
satzes beginnen. Dazu versetzen wir das Recordset mit
der AddNew-Methode in den Einfügemodus für einen
neuen Datensatz:

 rst.AddNew

Dann weisen wir den einzelnen Feldern der Tabelle, die
wir über das Ausrufezeichen angeben, die gewünschten
Werte zu:

 rst!Vorname = "André"

 rst!Nachname = "Minhorst"

 rst!Geburtsdatum = "23.01.1971"

 rst!Aktiv = True

 rst!Jahresumsatz = 9999.99

Danach schließen wir das Anlegen des neuen Datensatzes
ab, indem wir die Update-Methode aufrufen und damit

Bild 1:  Beispieltabelle tblKunden

Datenzugriff programmieren
Daten bearbeiten: Execute vs. Recordset in DAO

www.access-im-unternehmen.de/1580Seite 36

ACCESS
IM UNTERNEHMEN

den Datensatz in der dem Recordset zugrunde
liegenden Tabelle speichern:

 rst.Update

End Sub

Damit legen wir den Datensatz aus Bild 2 in der
Tabelle an.

Wo ist das Feld KundeID?
Das Feld KundeID haben wir in der Tabelle als Auto-
wert-Feld definiert. Das heißt, dass wir es nicht zu füllen
brauchen – es wird automatisch mit dem durch die Auto-
wert-Funktion ermittelten Wert gefüllt.

Diese entspricht immer dem zuletzt hinzugefügten Wert
für dieses Feld plus 1.

Wir können aber auch das Feld KundeID übergeben, wenn
wir einmal einen anderen Wert als den durch die Auto-
wert-Funktion vorgegebenen Wert angeben wollen:

rst!KundeID = 111

Dabei sind folgende Dinge zu beachten:

•	Der Wert darf noch nicht vergeben sein, sonst tritt der
Fehler 3022 auf, weil das Primärschlüsselfeld jeden
Wert nur einmal enthalten darf.

•	Der Autowert zählt anschließend an dem Wert weiter,
den wir manuell zugewiesen haben. Das kann zu Pro-
blemen führen, wenn die Tabelle vorher beispielswei-
se Datensätze mit den ID-Werten 1 und 3 enthalten
hat und wir nun einen Datensatz mit dem ID-Wert 2
anlegen. Die Autowert-Funktion wird nun als nächs-
ten Wert 3 nutzen, was wiederum zum Fehler 3022
führt.

Die manuelle Vorgabe eines Wertes für ein Autowert-Feld
sollte also mit Bedacht durchgeführt werden.

Schreibweisen für das Datum
Wir haben hier das Datum einfach als Zeichenkette über-
geben ("23.01.1971"). Damit haben wir Potenzial für
einen Laufzeitfehler geschaffen, denn das Datum muss
unbedingt ein gültiges Datum sein. Wir könnten auch die
folgende Schreibweise verwenden:

rst!Geburtsdatum = #1971-01-23#

Diese wird auf Systemen mit deutschen Lokaleinstellun-
gen jedoch direkt in die folgende Zeile umgewandelt:

rst!Geburtsdatum = #1/23/1971#

Wie können aber auch die Zeichenkette "23.01.1971"
vorsichtshalber mit der CDate-Funktion in ein gültiges
Datum umwandeln oder vorab mit IsDate prüfen, ob es
sich um ein gültiges Datum handelt.

AddNew mit Variablen
Dies können wir auch erledigen, indem wir die Werte für
die einzelnen Felder zuvor in Variablen speichern und
diese dann den Feldern zuweisen. Wir starten wie zuvor:

Public Sub Einfuegen_AddNew_Variablen()

 Dim db As DAO.Database

 Dim rst As DAO.Recordset

Dann deklarieren wir die Variablen, die wir mit den einzu-
fügenden Werten füllen wollen, und versehen diese gleich
mit den entsprechenden Datentypen:

 Dim strVorname As String

Bild 2:  Neuer Datensatz in der Tabelle tblKunden

Datenzugriff programmieren
Daten bearbeiten: Execute vs. Recordset in DAO

www.access-im-unternehmen.de/1580 Seite 37

ACCESS
IM UNTERNEHMEN

 Dim strNachname As String

 Dim datGeburtsdatum As Date

 Dim bolAktiv As Boolean

 Dim curJahresumsatz As Currency

Das Database-Objekt und das Recordset-Objekt füllen
wir wie zuvor:

 Set db = CurrentDb

 Set rst = db.OpenRecordset("tblKunden", dbOpenDynaset)

Dann weisen wir die Werte den Variablen zu, die wir gleich
zum Einfügen nutzen wollen:

 strVorname = "Klaus"

 strNachname = "Müller"

 datGeburtsdatum = "01.01.2000"

 bolAktiv = False

 curJahresumsatz = 8888.88

Schließlich rufen wir AddNew auf, weisen die Werte aus
den Variablen den einzelnen Feldern zu und speichern den
Datensatz mit der Update-Methode:

 rst.AddNew

 rst!Vorname = strVorname

 rst!Nachname = strNachname

 rst!Geburtsdatum = datGeburtsdatum

 rst!Aktiv = bolAktiv

 rst!Jahresumsatz = curJahresumsatz

 rst.Update

End Sub

Dies ist erst einmal wesentlich mehr Schreibarbeit, aber
wir bereiten damit etwas vor, was in der Praxis wesentlich
häufiger vorkommen wird als das Eintragen von fest im
Code angegebenen Werten, nämlich das Übergeben der
anzulegenden Informationen per Parameter. Damit können
wir mit einem einzigen Aufruf – unter Angabe der für den
neuen Datensatz einzufügenden Werte – einen neuen
Datensatz in der gewünschten Tabelle anlegen.

AddNew mit Parametern
Dazu holen wir die Variablen einfach in die Parameterliste
der Prozedur:

Public Sub Einfuegen_AddNew_Parameter(_

 strVorname As String, _

 strNachname As String, _

 datGeburtsdatum As Date, _

 bolAktiv As Boolean, _

 curJahresumsatz As Currency)

Die folgenden Schritte sind identisch mit denen der vor-
herigen Prozedur:

 Dim db As DAO.Database

 Dim rst As DAO.Recordset

 Set db = CurrentDb

 Set rst = db.OpenRecordset("tblKunden", dbOpenDynaset)

 rst.AddNew

 rst!Vorname = strVorname

 rst!Nachname = strNachname

 rst!Geburtsdatum = datGeburtsdatum

 rst!Aktiv = bolAktiv

 rst!Jahresumsatz = curJahresumsatz

 rst.Update

End Sub

Diese Funktion können wir nun von beliebiger Stelle inner-
halb des VBA-Projekts wie folgt aufrufen und haben damit
eine Wrapper-Funktion zum Anlegen eines neuen Daten-
satzes in die Tabelle tblKunden geschaffen:

Call Einfuegen_AddNew_Parameter("Theo", "Meier",

"31.12.1999", True, 7777.77)

ID des neuen Datensatzes bei AddNew auslesen
Wenn wir wie zuvor beschrieben erst einen Kunden an-
legen und dann eine Bestellung für diesen hinzufügen
wollen, benötigen wir den Wert des Feldes KundeID für

Datenzugriff programmieren
Daten bearbeiten: Execute vs. Recordset in DAO

www.access-im-unternehmen.de/1580Seite 38

ACCESS
IM UNTERNEHMEN

den neu hinzugefügten Kunden, um die neue Bestellung
mit diesem verknüpfen zu können. Bei Verwendung von
AddNew/Update ist das Ermitteln allerdings recht ein-
fach.

Wir müssen lediglich den Wert des Feldes KundeID ab-
fragen, bevor wir den Datensatz mit der Update-Methode
speichern.

Warum vorher? Weil durch die Update-Methode der
Datensatzzeiger nicht mehr auf dem angelegten Daten-
satz steht. Den Wert des Feldes KundeID lesen wir also
wie folgt aus:

 ...

 rst!Jahresumsatz = 9999.99

 Debug.Print "Neuer Kunde: " & rst!KundeID

 rst.Update

 ...

Es gibt jedoch noch eine weitere Möglichkeit, die gerade
bei Verwendung von SQL Server als Backend notwendig
ist. Dabei setzen wir mit LastModified ein Bookmark auf
den Datensatz, der zuletzt geändert wurde – in diesem
Fall den zuletzt angelegten Datensatz.

Anschließend können wir damit wieder den Wert des
Feldes KundeID für den neuen Datensatz auslesen:

 ...

 rst.Update

 rst.Bookmark = rst.LastModified

 Debug.Print "Neuer Kunde: " & rst!KundeID

 ...

Einfügen von Datensätzen mit Execute/INSERT
INTO
Wenn wir die Execute-Methode des Database-Objekts
nutzen wollen, um beispielsweise einen neuen Datensatz
mit INSERT INTO einzufügen, benötigen wir im Unter-
schied zu AddNew/Update kein Recordset-Objekt.

Dafür müssen wir die auszuführende Abfrage aber direkt
vollständig zusammenstellen, statt bequem die einzelnen
Werte den Feldern zuzuweisen. Das sieht auf den ersten
Blick unübersichtlicher aus, aber letztlich sind die gleichen
Elemente enthalten.

Wie beginnen mit dem Definieren von Variablen für das
Database-Objekt und für die zu verwendende SQL-An-
weisung:

Public Sub Einfuegen_INSERTINTO()

 Dim db As DAO.Database

 Dim strSQL As String

Die Variable strSQL benötigt man nicht zwangsläufig,
aber es kann hilfreich sein, wenn man zu Testzwecken die
verwendete SQL-Anweisung im Direktbereich ausgeben
möchte. Außerdem wird die Lesbarkeit so verbessert.

Wir füllen wieder die Variable db mit dem Wert aus Cur-
rentDb:

 Set db = CurrentDb

Dann stellen wir die SQL-Anweisung in strSQL zusammen
(in einer Zeile eingeben):

 strSQL = "INSERT INTO tblKunden(Vorname, Nachname,

Geburtsdatum, Aktiv, Jahresumsatz) VALUES('André', 'Min-

horst', #1971/01/23#, -1, 9999.99)"

INSERT INTO erwartet zunächst den Namen der Zieltabel-
le und dahinter in Klammern die Liste der Felder, die wir
füllen möchten.

Dann folgt das VALUES-Schlüsselwort mit den in Klam-
mern eingefassten Werten.

Hier sehen wir direkt die Unterschiede, die das Verwen-
den von Execute/INSERT INTO ein wenig komplizierter
machen:

Datenzugriff programmieren
SQL ausführen mit Execute statt DoCmd.RunSQL

www.access-im-unternehmen.de/1589Seite 46

ACCESS
IM UNTERNEHMEN

RunSQL und Execute einsetzen
Grundsätzlich sind die beiden Methoden ähnlich und
dienen dem Aufruf von Aktionsabfragen zum Löschen, An-
legen oder Bearbeiten von Datensätzen einer Tabelle. Als
Beispiel verwenden wir eine Tabelle namens tblKatego-
rien mit den beiden Feldern KategorieID (Primärschlüs-
selfeld) und Kategorie (Textfeld mit eindeutigem Index).

Wenn wir einen Eintrag zu einer Tabelle hinzufügen wol-
len, erledigen wir das mit RunSQL wie folgt (in einer Zeile
im Direktbereich eingeben):

DoCmd.RunSQL "INSERT INTO tblKategorien(Kategorie) µ

 VALUES('Kategorie 1')"

Bei der Execute-Methode können wir direkt mit Cur-
rentDb arbeiten und übergeben die gleiche Abfrage:

CurrentDb.Execute "INSERT INTO tblKategorien(Kategorie) µ

 VALUES('Kategorie 1')"

Es bietet sich jedoch an, direkt eine Variable für das Da-
tabase-Objekt zu deklarieren. Das ist auch Voraussetzung
für das Nutzen der weiteren Vorteile der Execute-Me-
thode:

Public Sub Beispiel_Execute()

 Dim db As DAO.Database

 Set db = CurrentDb

 db.Execute "INSERT INTO tblKategorien(Kategorie) µ

 VALUES('Kategorie 2')"

End Sub

Warum wird RunSQL überhaupt verwendet?
Einer der Gründe, warum sich die RunSQL-Methode der
DoCmd-Klasse so großer Beliebtheit erfreut, ist vermut-
lich in der technischen Nähe der DoCmd-Methoden zu
den Aktionen in den Access-Makros zu finden.

Access-Makros waren einer der Gründe, warum auch
Nicht-Programmierer mit Access schnell Ergebnisse
erzielen können: Man braucht nicht VBA zu beherrschen,
sondern kann schnell im Makro-Editor ein paar Befehle
zusammenstellen, die beispielsweise durch den Klick auf
eine Schaltfläche ausgeführt werden.

Die Befehle des Makro-Editors finden wir zum größten
Teil in den Methoden der DoCmd-Klasse.

Wer also in seiner Anfangszeit im Makro-Editor die Me-
thode AusführenSQL genutzt hat, und dann zur Nutzung

SQL ausführen mit Execute statt DoCmd.RunSQL
In unseren Audits mit unseren Kunden und Lesern untersuchen wir auch regelmäßig den

VBA-Code in deren Access-Anwendungen. Dabei fallen uns immer wieder Programmier-

gewohnheiten auf, die irgendwann einmal eingeführt und seitdem nie wieder geändert

wurden. Eine davon ist, SQL-Anweisungen wie INSERT INTO, UPDATE oder DELETE

mit der Methode RunSQL der DoCmd-Klasse auszuführen. Das ist grundsätzlich nicht

falsch, solange dies zum Ziel führt. Es gibt jedoch noch mindestens eine Alternative, ins-

besondere den Aufruf mit der Execute-Methode der Database-Klasse. Diese führt zwar

auch nur die übergebene Aktionsabfrage aus, bietet aber dennoch Vorteile gegenüber

DoCmd.RunSQL. Welche Vorteile das sind und wie wir überhaupt die DoCmd.RunSQL-

Methode durch die Execute-Methode ersetzen können, zeigen wir in diesem Beitrag.

Datenzugriff programmieren
SQL ausführen mit Execute statt DoCmd.RunSQL

www.access-im-unternehmen.de/1589 Seite 47

ACCESS
IM UNTERNEHMEN

von VBA übergegangen ist,
wird logischerweise zu der
entsprechenden DoCmd-Me-
thode RunSQL gegriffen ha-
ben, um das gleiche Ergebnis
zu erzielen.

Die Makro-Aktion Ausfüh-
renSQL ist übrigens mindes-
tens seit Access 2010 nicht
mehr verfügbar – wir mussten
ein altes Access 97-Buch he-
ranziehen, um sicherzugehen,
dass es diese Makro-Aktion
einmal gab.

Und da die RunSQL-Methode
nach wie vor funktioniert, gab
es für viele Entwickler keinen Grund, sich nach einer
Alternative umzusehen.

Diese stellen wir in diesem Beitrag mit der Execute-Me-
thode der Database-Klasse vor und zeigen auch, warum
dies die bessere Variante ist. Dafür sprechen die folgen-
den Gründe:

•	Wir können Fehler bei Verwendung von Execute über
eine benutzerdefinierte Fehlerbehandlung abfangen.
Bei DoCmd.RunSQL gelingt dies nicht.

•	Wir können nach dem Ausführen der Execute-Me-
thode direkt ermitteln, wie viele Datensätze von der
Aktionsabfrage betroffen sind.

•	Und wir können beim Hinzufügen eines Datensatzes
mit INSERT INTO direkt die ID des Autowertfeldes des
hinzugefügten Datensatzes ermitteln.

•	Wenn wir mehrere Aktionsabfragen in einer Trans-
aktion ausführen wollen, ist dies nur mit der Execute-
Methode möglich.

Fehlerbehandlung beim
RunSQL vs. Execute
Wenn wir eine SQL-Anweisung
mit RunSQL ausführen, können
wir bestimmte Fehler nicht
mit einer benutzerdefinierten
Fehlerbehandlung erkennen.

Grundsätzlich werden bei Ver-
wendung von RunSQL ohne
weitere Maßnahmen alle Fehler
über die Benutzeroberfläche
gemeldet, zum Beispiel, wenn
wir einen Datensatz anfügen
wollen und damit einen bereits
vorhandenen Wert in einem
eindeutigen Feld hinzufügen
würden:

Public Sub Beispiel_RunSQL_Fehler()

 DoCmd.RunSQL "INSERT INTO tblKategorien(Kategorie) µ

 VALUES('Kategorie 1')"

End Sub

Dieser Fehler würde uns nur über die Benutzeroberfläche
gemeldet werden (siehe Bild 1).

Wir können diesen Fehler nicht über eine Fehlerbehand-
lung etwa mit On Error Resume Next abfangen und auch
die Fehlernummer anschließend nicht mit Debug.Print
Err.Number auswerten.

Wir können lediglich die Anzeige der Fehlermeldung
unterbinden, indem wir zuvor die Anweisung DoCmd.
SetWarnings False einstellen und diese anschließend mit
DoCmd.SetWarnings True wieder aktivieren. In diesem
Fall würden wir den Fehler jedoch gar nicht bemerken.

Andere Fehler, wie Tippfehler in Tabellen- oder Feldnamen,
können wir hingegen mit einer benutzerdefinierten Fehler-
behandlung abfangen:

Bild 1:  Datenfehler beim DoCmd.RunSQL

Interaktiv
Ordner und Dateien in Access-Tabellen einlesen

www.access-im-unternehmen.de/1583Seite 50

ACCESS
IM UNTERNEHMEN

Alles oder nur einen Teil einlesen?
Technisch haben wir alle Möglichkeiten. Wir können mit
den Elementen und Methoden der FileSystemObject-
Klasse auf alle Laufwerke zugreifen und uns von dort auch
durch die einzelnen Verzeichnisse arbeiten und schließlich
die darin enthaltenen Dateien ermitteln.

Das ist jedoch nur bedingt sinnvoll, da die Datenmengen
schnell riesig werden und wir den in unserer Datenbank
gespeicherten Bestand möglichst synchron mit der Fest-
platte halten wollen. Das erfordert regelmäßige Aktualisie-
rungen, was jeweils Minuten oder sogar Stunden dauern
kann.

Also entscheiden wir uns bereits an dieser Stelle, immer
nur einen Teil des Dateisystems einzulesen – in diesem
Fall beginnend mit der Angabe des Verzeichnisses, dessen
Inhalte wir erfassen wollen.

Den Ausgangspunkt für den zu entwickelnden Algorithmus
bildet also die Auswahl des Verzeichnisses, dessen Unter-
elemente wir in unser Datenmodell überführen wollen.

Datenmodell für die Erfassung von
Verzeichnissen und Dateien
Um die Struktur des Dateisystems bezüglich des von
uns gewählten Ordners in einer Datenbank zu speichern,
haben wir ebenfalls mehrere Möglichkeiten.

Wir können einfach eine Tabelle erstellen, in die wir immer
den vollständigen Pfad der Verzeichnisse und Dateien
schreiben. Das macht es aber aufwendiger, etwa ein Tree-
View mit diesen Daten zu füllen.

Wir müssten uns dann mit vielen Zeichenkettenoperatio-
nen durch die einzelnen Verzeichnisebenen eines Pfades
arbeiten, was sehr viel Zeit kostet. Außerdem ist es nicht
unbedingt sehr platzsparend, wenn wir immer wieder die
gleichen übergeordneten Verzeichnisse in einem Daten-
satz ablegen.

Also wählen wir die Alternative, die aus einem Satz von
drei Tabellen besteht. Hier benötigen wir zunächst eine
Tabelle, um die Verzeichnisse zu speichern, beginnend
mit den Verzeichnissen der ersten Ebene. Die dazu be-

Ordner und Dateien in Access-Tabellen einlesen
Es gibt verschiedene Gründe, warum man Ordner und Dateien aus dem Filesystem in

eine entsprechende Datenstruktur einlesen sollte. Der Erste ist offensichtlich: Weil man

die Laufwerke, Ordner und Dateien oder auch nur Teile davon innerhalb der Datenbank

anzeigen möchte, beispielsweise um zu sehen, welche Dateien zu einem bestimmten

Projekt oder Kunden gehören. Der erste Schritt auf dem Weg zu einer solchen Anzeige

ist das Einlesen der gewünschten Struktur – unabhängig davon, ob der komplette Inhalt

einer Festplatte oder nur der Inhalt eines Unterverzeichnisses abgebildet werden soll.

Zum Einlesen von Laufwerken, Ordnern und Dateien gibt es verschiedene Möglichkei-

ten auf beiden Seiten. Auf der Seite des Dateisystems können wir mit der Dir-Funktion

oder alternativ mit dem FileSystemObject arbeiten, und beim Schreiben in die Tabellen

der Datenbank bietet sich unter DAO das Schreiben mit AddNew/Update oder mit der

Execute-Methode an. In diesem Artikel stellen wir die schnellsten Versionen vor, damit

das Einlesen umfangreicher Verzeichnis- und Dateistrukturen nicht unnötig lange dau-

ert.

Interaktiv
Ordner und Dateien in Access-Tabellen einlesen

www.access-im-unternehmen.de/1583 Seite 51

ACCESS
IM UNTERNEHMEN

nötigten Felder lauten beispielsweise
FolderID und Foldername. Damit sind
wir allerdings darauf beschränkt, nur
Ordnernamen speichern zu können – wir
müssen also noch einen Weg finden, die
Zuordnung der einzelnen Verzeichnisse
zum jeweils übergeordneten Verzeichnis
zu markieren.

Also fügen wir der Tabelle noch ein Feld
namens ParentID hinzu, mit dem wir
für einen Ordner jeweils den Datensatz
mit dem übergeordneten Ordner ange-
ben können. Wir speichern also in einer
Tabelle sowohl die Ordnernamen als auch
die Information über die Hierarchie dieser
Ordner.

Über das Feld ParentID erzeugen wir
eine reflexive Beziehung der Datensätze
der Tabelle auf sich selbst. Schließlich
fügen wir der Tabelle, die wir tblFolder
nennen und deren Entwurf wie in Bild 1
aussieht, noch ein Feld namens UID
hinzu.

In NTFS-Dateisystemen (New Technology
File System), die bereits mit Windows 3.1
eingeführt wurden, können wir mit API-
Funktionen eine eindeutige ID für Ordner
und Dateien ermitteln. Wozu wir diese
benötigen und wie wir diese auslesen,
erläutern wir später.

Zunächst kümmern wir uns aber um die Tabelle zum
Speichern der Dateiinformationen. Diese enthält wiederum
ein Primärschlüsselfeld (FileID), ein Feld zum Speichern
des Dateinamens (Filename) sowie ein Feld, mit dem wir
die Beziehung zu dem Ordner herstellen, in dem sich die
Datei befindet, und die wir wiederum ParentID nennen.
Außerdem fügen wir auch hier ein Feld namens UID für

den eindeutigen Identifizierer für die Datei sowie zwei Fel-
der zum Speichern der Dateigröße und des Anlage- bezie-
hungsweise letzten Änderungsdatums hinzu (siehe Bild 2).

Schließlich ergänzen wir im Beziehungen-Fenster noch
die notwendigen Beziehungen (siehe Bild 3). Hier ziehen
wir zunächst die Tabelle tblFolder zwei Mal hinein und
erstellen eine Beziehung des Feldes ParentID des im Be-

Bild 1:  Tabelle zum Speichern der Ordner

Bild 2:  Tabelle zum Speichern der Dateien

Interaktiv
Ordner und Dateien in Access-Tabellen einlesen

www.access-im-unternehmen.de/1583Seite 52

ACCESS
IM UNTERNEHMEN

ziehungen-Fenster mit tblFolders_1 benannten zweiten
Exemplars der Tabelle tblFolders zu dem mit tblFolder
benannten Exemplar. Damit realisieren wir die Beziehung
von Unterordnern zum übergeordneten Ordner. Außerdem
ziehen wir noch einen Beziehungspfeil vom Feld Paren-
tID der Tabelle tblFiles zum Feld FolderID der Tabelle
tblFolders.

Einlesen der Ordner und Dateien
Die intuitive Vorgehensweise zum Einlesen der Ordner und
Dateien des gewünschten Ordners würde sich nach dem
Aufbau des Dateisystems und unserer Tabellenstruktur
richten.

Wir würden also etwa die Klassen und Methoden der
FileSystemObject-Klasse nutzen, um ausgehend vom
Basisordner zunächst die darin enthaltenen Ordner ein-
zulesen und in die Tabelle tblOrdner zu schreiben. Beim
Durchlaufen dieser Ordner würden wir in einer rekursiven
Prozedur die untergeordneten Ordner und die Dateien
dieses Ordners einlesen und so weiter.

Diese Vorgehensweise ist jedoch nicht schnell genug.
Beim Einlesen umfangreicher Ordnerstrukturen wollen wir
schließlich nicht ewig warten. Deshalb wählen wir hier
einen alternativen Ansatz, der allerdings etwas komplexer
ist und wie in Listing 1 beginnt.

Was macht die Prozedur OrdnerUndDateienEinlesen
überhaupt?

•	Wir haben einen Startordner (zum Beispiel C:\Bue-
cher).

•	Darin sind Unterordner und Dateien.

•	In den Unterordnern sind wieder Unterordner und
Dateien. Das Ganze als Baum.

•	Die Prozedur läuft durch den ganzen Baum, schreibt
alle Ordner in tblFolders, schreibt alle Dateien in tblFi-

les, merkt sich zu jeder Datei und jedem Ordner, wo
sie liegen (ParentID), und speichert außerdem eine UID
(damit wir sie später wiedererkennen) und Größe und
Datum (für Dateien).

Danach können wir mit diesen Tabellen bequem arbeiten,
zum Beispiel zum Füllen eines TreeView-Steuerelements.

Die Prozedur OrdnerUndDateienEinlesen Schritt
für Schritt erklärt
Die Prozedur bekommt mit dem Parameter strRoot einen
Startpfad. Als Erstes deklarieren wir die Variablen:

•	wrk und db: Verweise auf die aktuelle Datenbank und
das Workspace-Objekt

•	rstFolders und rstFiles: Recordsets für tblFolders und
tblFiles

•	colTodo: Eine Collection als To-do-Liste mit Ordnern,
die noch abgearbeitet werden müssen

•	strPfad, strEintrag und strVollPfad: String-Variablen
für aktuelle Pfade/Namen

Bild 3:  Beziehungen zwischen den Tabellen

Interaktiv
Ordner und Dateien in Access-Tabellen einlesen

www.access-im-unternehmen.de/1583 Seite 53

ACCESS
IM UNTERNEHMEN

•	lngAttr: Dateiattribut (ist es ein Ordner oder eine
Datei?)

•	lngCounter: Wie viele Dateien haben wir schon ge-
funden?

•	strUID: Datei-/Ordner-ID, die wir mit der Funktion
GetFileID holen

•	lngParentID und lngCurrentFolderID: Verweise auf
übergeordnete Ordner

Public Sub OrdnerUndDateienEinlesen(ByVal strRoot As String)
 Dim wrk As DAO.Workspace
 Dim db As DAO.Database
 Dim rstFolders As DAO.Recordset
 Dim rstFiles As DAO.Recordset
 Dim colTodo As Collection
 Dim strPfad As String
 Dim strEintrag As String
 Dim strVollPfad As String
 Dim lngAttr As Long
 Dim lngCounter As Long
 Dim strUID As String
 Dim lngParentID As Long
 Dim lngCurrentFolderID As Long
 Dim lngTimer As Long
 Dim bolIsRoot As Boolean

 lngTimer = Timer

 If Right$(strRoot, 1) = "\" Then
 strRoot = Left$(strRoot, Len(strRoot) - 1)
 End If

 Set wrk = DBEngine(0)
 Set db = wrk.Databases(0)

 Call TabellenZuruecksetzen(db)

 Set rstFolders = db.OpenRecordset("tblFolders", dbOpenDynaset)
 Set rstFiles = db.OpenRecordset("tblFiles", dbOpenDynaset)
 Set colTodo = New Collection

 Call TodoAdd(colTodo, strRoot, 0)
 bolIsRoot = True
 DoCmd.Echo False
 DoCmd.Hourglass True
 wrk.BeginTrans
 On Error GoTo Fehler
 ...

Listing 1:  Die Prozedur OrdnerstrukturEinlesen (Teil 1)

Interaktiv
Ordner und Dateien in Access-Tabellen einlesen

www.access-im-unternehmen.de/1583Seite 54

ACCESS
IM UNTERNEHMEN

•	lngTimer: Erfassung der Laufzeit

•	bolIsRoot: Gibt an, ob wir noch im Root-Ordner sind

Zu Beginn speichern wir den aktuellen Timer-Wert in
lngTimer, um später die Gesamtzeit für den Vorgang
ausgeben zu können. Außerdem schneiden wir vom Root-
Ordner in strRoot noch ein eventuell am Ende befindliches
Backslash-Zeichen ab, falls dieses noch vorhanden ist.

Workspace und Transaktion für schnelleres
Schreiben
Danach initialisieren wir die Workspace-Variable wrk
und die Database-Variable db. Das Workspace-Objekt
benötigen wir, weil wir damit die vielen Anlegevorgänge
in einer Transaktion bündeln können, was wesentlich
schneller funktioniert, als wenn wir jeden Vorgang einzeln
durchführen.

Tabellen zurücksetzen und leeren
Danach rufen wir die Prozedur TabellenZuruecksetzen
auf. Diese löscht nicht nur einfach die Daten, sondern
fügt zuvor einen neuen Datensatz in die beiden Tabellen
tblFolders und tblFiles ein, der im Primärschlüsselfeld
den Wert 0 enthält. Damit setzen wir den Autowert der
beiden Tabellen zurück, sodass beim Neuanlegen von
Datensätzen nachfolgend wieder mit dem Wert 1 gestartet
wird. Anschließend löschen wir alle Datensätze aus diesen
beiden Tabellen:

Public Sub TabellenZuruecksetzen(db As DAO.Database)

 db.Execute _

 "INSERT INTO tblFiles(FileID, Filename) " _

 & "VALUES(0, '')", dbFailOnError

 db.Execute _

 "INSERT INTO tblFolders(FolderID, Foldername) " _

 & "VALUES(0, '')", dbFailOnError

 db.Execute "DELETE FROM tblFiles", dbFailOnError

 db.Execute "DELETE FROM tblFolders", dbFailOnError

End Sub

Weitere Initialisierungen
Danach öffnen wir zwei Recordsets: rstFolders für die
Ordner und rstFiles für die Dateien. Außerdem legen wir
ein Collection-Objekt namens colToDo an, mit dem wir
noch zu bearbeitende Ordner speichern.

Hier legen wir als Erstes den Startordner aus dem Para-
meter strRoot mit dem Wert 0 ab. Das geschieht in einer
weiteren Hilfsprozedur namens TodoAdd.

Dieser übergeben wir das Collection-Objekt, den Pfad
und die ID des übergeordneten Ordners als Parameter.

Wir fügen der Collection dann einen Eintrag hinzu, der aus
der ID des übergeordneten Ordners, dem Pipe-Zeichen (|)
und dem Pfad besteht. Im ersten Aufruf tragen wir also
den Wert 0|[Pfad] ein:

Private Sub TodoAdd(ByRef col As Collection, _

 ByVal strPfad As String, ByVal lngParentID As Long)

 col.Add CStr(lngParentID) & "|" & strPfad

End Sub

Der Wert 0 bedeutet in diesem Fall, dass es keinen über-
geordneten Ordner gibt.

Da dieser erste Ordner eine Spezialbehandlung erfahren
soll, stellen wir außerdem die Variable bolIsRoot auf True
ein.

Schließlich deaktivieren wir die Bildschirmaktualisierung
mit DoCmd.Echo False und aktivieren die Sanduhr mit
DoCmd.Hourglass True.

Starten der Transaktion und der Do While-
Schleife
Nun starten wir die Transaktion und integrieren die Fehler-
behandlung (siehe Listing 2).

Anschließend starten wir eine Do While-Schleife, in der
wir alle Elemente der Collection colToDo durchlaufen. Die

Interaktiv
Ordner und Dateien in Access-Tabellen einlesen

www.access-im-unternehmen.de/1583 Seite 55

ACCESS
IM UNTERNEHMEN

 ...
 Do While colTodo.Count > 0
 Call TodoPop(colTodo, strPfad, lngParentID)
 If Right$(strPfad, 1) <> "\" Then
 strPfad = strPfad & "\"
 End If
 If Not bolIsRoot Then
 rstFolders.AddNew
 rstFolders!FolderName = GetFolderNameFromPath(strPfad)
 If lngParentID > 0 Then
 rstFolders!ParentID = lngParentID
 Else
 rstFolders!ParentID = Null
 End If
 rstFolders!UID = GetFileID(strPfad)
 lngCurrentFolderID = rstFolders!FolderID

 rstFolders.Update
 Else
 lngCurrentFolderID = 0
 bolIsRoot = False
 End If
 strEintrag = Dir$(strPfad & "*", vbDirectory)
 Do While strEintrag <> ""
 If strEintrag <> "." And strEintrag <> ".." Then
 strVollPfad = strPfad & strEintrag
 strUID = GetFileID(strVollPfad)
 If Len(strUID) > 0 Then
 lngAttr = GetAttr(strVollPfad)
 If (lngAttr And vbDirectory) = vbDirectory Then
 Call TodoAdd(colTodo, strVollPfad, lngCurrentFolderID)
 Else
 rstFiles.AddNew
 rstFiles!FileName = strEintrag
 rstFiles!ParentID = lngCurrentFolderID
 rstFiles!UID = strUID
 rstFiles!Filesize = FileLen(strVollPfad)
 rstFiles!FileDateTime = FileDateTime(strVollPfad)
 rstFiles.Update
 lngCounter = lngCounter + 1
 End If
 End If
 End If
 strEintrag = Dir$()
 Loop
 ...

Listing 2:  Die Prozedur OrdnerstrukturEinlesen (Teil 2)

Interaktiv
Dateien schnell im TreeView-Steuerelement anzeigen

www.access-im-unternehmen.de/1584Seite 64

ACCESS
IM UNTERNEHMEN

Formular mit TreeView-
Steuerelement erstellen
Zunächst legen wir ein neues For-
mular namens frmDateienImTree-
view in der Entwurfsansicht an.

Diesem fügen wir gleich das
TreeView-Steuerelement hinzu,
mit dem wir die Dateien anzeigen
wollen, und nennen es ctlTree-
View.

Das TreeView-Steuerelement soll
für seine Einträge Icons anzeigen,
daher fügen wir noch ein Image
List-Steuerelement namens
ctlImageList hinzu. Oben fügen
wir weitere Steuerelemente ein:

•	ein Textfeld namens txtBasis
pfad zur Anzeige des aktuellen
Hauptverzeichnisses,

Dateien schnell im TreeView-Steuerelement anzeigen
Im Artikel »Ordner und Dateien in Access-Tabellen einlesen« (www.access-im-unter-

nehmen.de/1583) haben wir gezeigt, wie wir den Inhalt kompletter Ordner samt Unter-

ordnern und Dateien in Tabellen speichern. Doch was helfen die dort liegenden Daten,

wenn wir sie nicht in einem Access-Formular anzeigen können? Wie das gelingt, zei-

gen wir im vorliegenden Artikel. Als Steuerelement für die Anzeige hierarchischer Daten

ist das TreeView-Steuerelement prädestiniert. Wir möchten alle Elemente der Tabellen

aus dem oben genannten Artikel in einem solchen Steuerelement anzeigen und weitere

Funktionen hinzufügen: die Anzeige des jeweiligen Ordners direkt im Windows Explorer,

das Öffnen der aktuell markierten Datei oder auch das Ausschneiden, Kopieren und

Einfügen, das wir nicht nur auf die Elemente des TreeView-Steuerelements anwenden,

sondern auch auf die Originaldateien. Auch das Umbenennen von Ordnern und Dateien

soll möglich sein – und schließlich wollen wir auch noch deren Speicherort durch Drag

and Drop anpassen können. In diesem Artikel erfahren Sie, wie Sie das TreeView schnell

mit Ordnern und Dateien füllen können.

Bild 1:  Grundaufbau des Formulars

Interaktiv
Dateien schnell im TreeView-Steuerelement anzeigen

www.access-im-unternehmen.de/1584 Seite 65

ACCESS
IM UNTERNEHMEN

•	eine Schaltfläche namens
cmdOrdnerAuswaehlen
zum Auswählen des Haupt-
verzeichnisses, dessen
Unterordner und Dateien
angezeigt werden sollen,

•	ein Kontrollkästchen
namens chkDateienIm-
TreeViewAnzeigen, um
festzulegen, ob die Dateien
im TreeView-Steuerelement
ein- oder ausgeblendet
werden sollen, und

•	eine weitere Schaltfläche
namens cmdNeuEinlesen, mit der wir das TreeView-
Steuerelement erneut füllen können.

Der Entwurf sieht nun zunächst wie in Bild 1 aus.

Optionentabelle anlegen
Die Einstellungen der beiden Steuerelemente txtBa-
sispfad und chkDateienImTreeViewAnzeigen wollen
wir speichern und jeweils beim nächsten Öffnen des
Formulars wiederherstellen. Dazu benötigen wir eine
Tabelle namens tblOptionen, deren Entwurf wie in Bild 2
aussieht.

Das Formular binden wir über die Eigenschaft Datensatz-
quelle an die Tabelle tblOptionen, die beiden Steuer-
elemente txtBasispfad und chkDateienImTreeView
Anzeigen über die Eigenschaft Steuerelementinhalt an
die jeweiligen Felder der Optionentabelle.

Basispfad auswählen
Damit wir den Ordner auswählen können, dessen
Unterordner und Dateien im TreeView-Steuerelement
angezeigt werden sollen, hinterlegen wir für die Schalt-
fläche cmdOrdnerAuswaehlen die folgende Ereignis-
prozedur:

Private Sub cmdOrdnerAuswaehlen_Click()

 Me.txtBasispfad = ChooseFolder

 Me.Dirty = False

End Sub

Diese zeigt über die Funktion ChooseFolder einen Ord-
nerauswahl-Dialog an:

Public Function ChooseFolder()

 Dim objFileDialog As Office.FileDialog

 Dim strTemp As String

 Set objFileDialog = _

 Application.FileDialog(msoFileDialogFolderPicker)

 With objFileDialog

 .Title = "Datei auswählen"

 .ButtonName = "Auswählen"

 .InitialFilename = CurrentProject.Path & "\"

 If .Show = True Then

 strTemp = .SelectedItems(1)

 End If

 End With

 ChooseFolder = strTemp

End Function

Bild 2:  Entwurf der Optionen-Tabelle

Interaktiv
Dateien schnell im TreeView-Steuerelement anzeigen

www.access-im-unternehmen.de/1584Seite 66

ACCESS
IM UNTERNEHMEN

Um die hier verwendete Klasse FileDialog zu nutzen,
müssen wir noch einen Verweis auf die Bibliothek Micro-
soft Office 16.0 Object Library hinzufügen.

Nach der Auswahl werden die Daten des Formulars mit
Me.Dirty = False gespeichert.

Füllen des TreeView-Steuerelements
Bevor wir uns die Prozeduren ansehen, mit denen wir
die Ordner und Dateien aus den Tabellen tblFolders und
tblFiles in das TreeView-Steuerelement laden, fügen wir
im Kopf des Klassenmoduls des Formulars frmDateien

ImTreeView die folgenden Deklarationsanweisungen
hinzu:

Dim objTreeview As MSComctlLib.TreeView

Dim objImageList As MSComctlLib.ImageList

Dim dicFolders As Scripting.Dictionary

Dim dicFiles As Scripting.Dictionary

Die ersten beiden benötigen wir, um die Steuerelemente
ctlTreeView und ctlImageList zu referenzieren, die beiden
übrigen als temporären Speicher für die anzuzeigenden
Ordner und Dateien. Um diese Dictionary-Elemente nutzen

Private Sub Form_Load()

 DoCmd.Hourglass True

 Set objImageList = Me.ctlImageList.Object

 objImageList.ImageHeight = 16
 objImageList.ImageWidth = 16

 Call ImageListFuellen

 Set objTreeview = Me.ctlTreeView.Object
 With objTreeview
 Set .ImageList = objImageList
 .Nodes.Clear
 .Appearance = ccFlat
 .BorderStyle = ccNone
 .HideSelection = False
 .LineStyle = tvwRootLines
 .Indentation = 250
 .Font.name = "Calibri"
 .Font.Size = 10
 .OLEDragMode = ccOLEDragAutomatic
 .OLEDropMode = ccOLEDropManual
 End With

 Call FillTreeView(Me.chkDateienInTreeviewAnzeigen)
 Call SelectCurrentNode

 DoCmd.Hourglass False
End Sub

Listing 1:  Diese Prozedur wird beim Laden des Formulars ausgeführt.

Interaktiv
Dateien schnell im TreeView-Steuerelement anzeigen

www.access-im-unternehmen.de/1584 Seite 67

ACCESS
IM UNTERNEHMEN

zu können, benötigen wir einen weiteren Verweis, dieses
Mal auf die Bibliothek Microsoft Scripting Runtime.

Die Ereignisprozedur Beim Laden
In der Prozedur, die durch das Ereignis Beim Laden des
Formulars ausgelöst wird (siehe Listing 1), aktivieren wir
zunächst die Sanduhr (die wir am Ende wieder deaktivie-
ren) und weisen der Variablen objImageList die Eigen-
schaft Object des Steuerelements ctlImageList zu. Damit
können wir per IntelliSense auf die spezifischen Eigen-
schaften dieses Steuerelements zugreifen.

Dann stellen wir seine Eigenschaften ImageHeight und
ImageWidth jeweils auf 16 Pixel ein, um die Größe der

anzuzeigenden Icons festzulegen. Schließlich rufen wir die
Prozedur ImageListFuellen auf (siehe Listing 2). Diese
geht davon aus, dass wir die Icons, die wir im TreeView-
Steuerelement anzeigen wollen, in der Systemtabelle
MSysResources gespeichert haben.

Das haben wir bereits erledigt (siehe Bild 3). Die Prozedur
ImageListFuellen öffnet ein Recordset basierend auf der
Tabelle MSysResources, gefiltert nach den Elementen
des Typs png.

Dann referenziert sie das ImageList-Steuerelement mit
der bereits im Modulkopf deklarierten Variablen obj
ImageList. Anschließend wird die Eigenschaft ImageList

Private Sub ImageListFuellen()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim objImageList As MSComctlLib.ImageList

 Set db = CurrentDb
 Set rst = db.OpenRecordset("SELECT * FROM MSysResources WHERE Extension = 'PNG'", dbOpenSnapshot)

 Set objImageList = Me.ctlImageList.Object

 Set ctlTreeView.Object.ImageList = Nothing

 objImageList.ListImages.Clear

 Do While Not rst.EOF
 Call amvAddIconToImageListFromResourcesByName(objImageList, rst!name)
 rst.MoveNext
 Loop

 Dim objListImage As MSComctlLib.ListImage
 For Each objListImage In objImageList.ListImages
 Debug.Print objListImage.Index, objListImage.Key
 Next objListImage

 rst.Close
 Set rst = Nothing
 Set db = Nothing
End Sub

Listing 2:  Füllen des ImageList-Steuerelements mit den Bildern aus MSysResources

Interaktiv
Dateien schnell im TreeView-Steuerelement anzeigen

www.access-im-unternehmen.de/1584Seite 68

ACCESS
IM UNTERNEHMEN

des Steuerelements ctlTreeView geleert – die-
ses wird später erneut zugewiesen.

Dann leert die Prozedur das ImageList-Steu-
erelement mit der Clear-Methode der List
Images-Auflistung. Dann ruft die Prozedur eine
weitere Prozedur namens amvAddIconTo
ImageListFromResourcesByName auf.

Diese wollen wir hier nicht im Detail beschrei-
ben – sie lädt das Element mit dem Namen aus
rst!Name für den aktuellen Datensatz des Re-
cordsets und fügt es zum ImageList-Steuerele-
ment hinzu (siehe Modul MDL_AMV_Pictures). Auf diese
Weise landen alle .png-Dateien aus der Tabelle MSysRe-
sources im ImageList-Steuerelement und können so im
TreeView-Steuerelement verwendet werden.

Um dies nicht im ImageList-Steuerelement prüfen zu
müssen, gibt die Prozedur den Index und die Namen aller
Elemente einmal im Direktbereich des VBA-Editors aus –
diesen Bereich können wir im produktiven Einsatz später
entfernen. Das Ergebnis sieht in diesem Fall wie folgt aus:

 1 book

 2 folder

 3 new

 4 delete

 5 refresh

Danach schließt und leert die Prozedur alle Objektvariab-
len.

Zurück in der Prozedur Form_Load referenzieren wir nun
das TreeView-Steuerelement aus Me.ctlTreeView.Object
mit der Variablen objTreeView und stellen einige Eigen-
schaften ein. Als Erstes weisen wir diesem für die Eigen-
schaft ImageList den Inhalt von objImageList zu. So
weiß das TreeView-Steuerelement, woher es seine Icons
beziehen soll, die wir nachher den Elementen zuweisen.

Dann leert die Prozedur alle gegebenenfalls noch vorhan-
denen Elemente. Schließlich folgt die Einstellung weiterer
Eigenschaften, die für das Aussehen des TreeView-Steu-
erelements verantwortlich sind:

•	Appearance erhält den Wert ccFlat, damit es nicht mit
3d-Effekt angezeigt wird,

•	mit BorderStyle (Wert: ccNone) blenden wir den Rah-
men des Steuerelements aus (wir fügen diesen über
die Eigenschaften des Steuerelements selbst über das
Eigenschaftenblatt wieder hinzu),

•	mit HideSelection (False) legen wir fest, dass das
aktivierte Element auch beim Fokusverlust zumindest
grau hinterlegt wird,

•	mit LineStyle (tvwRootLines) legen wir die Art der Ver-
bindungslinien zwischen den Elementen fest,

•	Indentation stellen wir auf 250 ein, damit die Elemente
nicht so weit eingerückt werden wie im Standard,

•	mit Font.Name und Font.Size stellen wir Schriftart und
-größe fest und

•	mit OLEDragMode (ccOLEDragAutomatic) und OLE-
DropMode (ccOLEDropManual) legen wir fest, dass

Bild 3:  Icons für das TreeView-Steuerelement in der Tabelle MSysResources

